1
|
Chew XZ, Cobcroft J, Hutson KS. Fish ectoparasite detection, collection and curation. ADVANCES IN PARASITOLOGY 2024; 125:105-157. [PMID: 39095111 DOI: 10.1016/bs.apar.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fish parasitology is a dynamic and internationally important discipline with numerous biological, ecological and practical applications. We reviewed optimal fish and parasite sampling methods for key ectoparasite phyla (i.e. Ciliophora, Platyhelminthes, Annelida and Arthropoda) as well as recent advances in molecular detection of ectoparasites in aquatic environments. Ideally, fish capture and anaesthesia as well as parasite recovery methods should be validated to eliminate potential sampling bias and inaccuracy in determining ectoparasite population parameters. There are considerable advantages to working with fresh samples and live parasites, when combined with appropriate fixation methods, as sampling using dead or decaying materials can lead to rapid decomposition of soft-bodied parasites and subsequent challenges for identification. Sampling methods differ between target phyla, and sometimes genera, with optimum techniques largely associated with identification of parasite microhabitat and the method of attachment. International advances in fish parasitology can be achieved through the accession of whole specimens and/or molecular voucher specimens (i.e. hologenophores) in curated collections for further study. This approach is now critical for data quality because of the increased application of environmental DNA (eDNA) for the detection and surveillance of parasites in aquatic environments where the whole organism may be unavailable. Optimal fish parasite sampling methods are emphasised to aid repeatability and reliability of parasitological studies that require accurate biodiversity and impact assessments, as well as precise surveillance and diagnostics.
Collapse
Affiliation(s)
- Xian Zhe Chew
- James Cook University Singapore, Singapore City, Singapore
| | - Jennifer Cobcroft
- James Cook University Singapore, Singapore City, Singapore; College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kate S Hutson
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
2
|
Lagadec E, Mjølnerød EB, Jensen ØM, Plarre H, Nylund A. Multiple Aeromonas strains isolated from Atlantic salmon (Salmo salar) displaying red skin disease signs in Scandinavian rivers. JOURNAL OF FISH DISEASES 2024; 47:e13870. [PMID: 37800856 DOI: 10.1111/jfd.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Since 2014, Atlantic salmon (Salmo salar L.) displaying clinical signs of red skin disease (RSD), including haemorrhagic and ulcerative skin lesions, have been repeatedly observed in Swedish rivers. Although the disease has since been reported in other countries, including Norway, Denmark, Ireland and the UK, no pathogen has so far been conclusively associated with RSD. In this study, the presence of 17 fish pathogens was investigated through qPCR in 18 returning Atlantic salmon with clinical signs of the disease in rivers in Sweden and Norway between 2019 and 2021. Several potential pathogens were repeatedly detected, including a protozoan (Ichthyobodo spp.), an oomycete (Saprolegnia spp.) and several bacteria (Yersinia ruckeri, Candidatus Branchiomonas cysticola, Aeromonas spp.). Cultivation on different media from ulcers and internal organs revealed high concentrations of rod-shaped bacteria typical of Aeromonadaceae. Multilocus phylogenetic analysis of different clones and single gene phylogenies of sequences obtained from the fish revealed concurrent isolation of several bacterial strains belonging to the species A. bestiarum, A. piscicola and A. sobria. While these bacterial infections may be secondary, these findings are significant for future studies on RSD and should guide the investigation of future outbreaks. However, the involvement of Aeromonas spp. as putative primary etiological agents of the disease cannot be ruled out and needs to be assessed by challenge experiments.
Collapse
Affiliation(s)
- Erwan Lagadec
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Even Bysveen Mjølnerød
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Øyvind Marius Jensen
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Heidrun Plarre
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Katharios P, Kokkari C, Cascarano MC, Gyparakis S, Aggelidaki C, Antonakaki I, Vargiakaki E. A fish kill at the Aposelemis dam (Crete, Greece) caused by heavy parasitism by Ichthyobodo sp. JOURNAL OF FISH DISEASES 2023; 46:61-66. [PMID: 36116014 PMCID: PMC10087203 DOI: 10.1111/jfd.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A fish kill was recorded at the Aposelemis Dam, which is the main reservoir of drinking water for the island of Crete in Greece. Hundreds of goldfish were found dead at a side stream which provides water to the reservoir. The affected fish had been entrapped in a small pond at the side of the stream with practically zero water renewal as the event occurred in August which is a dry season for the island of Crete. The event was alarming for the local community since anthropogenic pollution was initially suspected which could pose a significant human health threat. Following examination of the fish, the mortality was attributed to heavy infection by the parasitic flagellate, Ichthyobodo sp., whilst no pollutants were detected. The parasite was studied through light and scanning electron microscopy and was identified molecularly.
Collapse
Affiliation(s)
- Pantelis Katharios
- Institute of Marine Biology, Biotechnology & AquacultureHellenic Centre for Marine Research, Greece, Former American Base of GournesHeraklionGreece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology & AquacultureHellenic Centre for Marine Research, Greece, Former American Base of GournesHeraklionGreece
| | - Maria Chiara Cascarano
- Institute of Marine Biology, Biotechnology & AquacultureHellenic Centre for Marine Research, Greece, Former American Base of GournesHeraklionGreece
| | - Stylianos Gyparakis
- Organisation for the Development of Crete SA (OAK SA)Aposelemis WTPHeraklionGreece
| | - Chrissi Aggelidaki
- Organisation for the Development of Crete SA (OAK SA)Aposelemis WTPHeraklionGreece
| | - Ioanna Antonakaki
- Organisation for the Development of Crete SA (OAK SA)Aposelemis WTPHeraklionGreece
| | - Efthimia Vargiakaki
- Organisation for the Development of Crete SA (OAK SA)Aposelemis WTPHeraklionGreece
| |
Collapse
|
4
|
MacAulay S, Ellison AR, Kille P, Cable J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. REVIEWS IN AQUACULTURE 2022; 14:1813-1829. [PMID: 36250037 PMCID: PMC9544729 DOI: 10.1111/raq.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with efficient surveillance. This however is particularly challenging in aquatic environments due to hidden biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and histopathology, are still widely used, but increasingly technological advances such as portable next generation sequencing (NGS) and artificial intelligence (AI) are being tested for early diagnosis. The most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and experience but provide a foundation for surveillance. Future computational remote sensing methods, such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not compromising on sensitivity, but they require capital and infrastructural investment. Molecular techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support the currently popular eDNA diagnosis. There is now vast potential for transformative change driven by developments in human diagnostics. Here we compare current surveillance and diagnostic technologies with those that could be used or developed for use in the aquatic environment, against three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Peter Kille
- School of Biosciences, Cardiff UniversityCardiffUK
| | - Joanne Cable
- School of Biosciences, Cardiff UniversityCardiffUK
| |
Collapse
|
5
|
Fridman S, Tsairidou S, Jayasuriya N, Sobolewska H, Hamilton A, Lobos C, Houston RD, Rodger H, Bron J, Herath T. Assessment of Marine Gill Disease in Farmed Atlantic Salmon ( Salmo salar) in Chile Using a Novel Total Gross Gill Scoring System: A Case Study. Microorganisms 2021; 9:microorganisms9122605. [PMID: 34946205 PMCID: PMC8706402 DOI: 10.3390/microorganisms9122605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Gill disorders have become more prevalent and widespread in finfish aquaculture in recent years. Their aetiology is often considered to be multifactorial. Effective diagnosis, control and prevention are hindered by the lack of standardised methodologies to characterise the aetiological agents, which produce an array of clinical and pathological presentations. The aim of this study was to define a novel gross pathological scoring system suitable for field-based macroscopic assessment of complex or multifactorial gill disease in farmed Atlantic salmon, using samples derived from a gill disease outbreak in Chile. Clinical assessment of gross gill morphology was performed, and gill samples were collected for qPCR and histology. A novel total gill scoring system was developed, which assesses gross pathological changes combining both the presumptive or healed amoebic gill disease (AGD) and the presence of other types of gill lesions. This scoring system offers a standardised approach to characterise the severe proliferative pathologies in affected gills. This total gill scoring system can substantially contribute to the development of robust mitigation strategies and could be used as an indicator trait for incorporating resistance to multifactorial gill disease into breeding goals.
Collapse
Affiliation(s)
- Sophie Fridman
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
- Correspondence:
| | - Smaragda Tsairidou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (S.T.); (R.D.H.)
| | - Nilantha Jayasuriya
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport TF10 8NB, Shropshire, UK; (N.J.); (T.H.)
| | | | - Alastair Hamilton
- Hendrix Genetics, Villa ’de Körver’, Boxmeer, 695831 CK Spoorstraat, The Netherlands; (A.H.); (C.L.)
| | - Carlos Lobos
- Hendrix Genetics, Villa ’de Körver’, Boxmeer, 695831 CK Spoorstraat, The Netherlands; (A.H.); (C.L.)
- PHARMAQ Analytiq Spa, Bernardino, Puerto Montt 1978, Chile
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (S.T.); (R.D.H.)
| | | | - James Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
| | - Tharangani Herath
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport TF10 8NB, Shropshire, UK; (N.J.); (T.H.)
| |
Collapse
|
6
|
Nylund A, Røed M, Blindheim S, Trösse C, Andersen L. Experimental challenge of Atlantic salmon Salmo salar using clones of Paramoeba perurans, P. pemaquidensis and Tetramitus sp. DISEASES OF AQUATIC ORGANISMS 2021; 145:1-13. [PMID: 34080578 DOI: 10.3354/dao03597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salmon gill disease in Norway is in most cases associated with a range of different pathogens, stress and environmental factors. Paramoeba perurans and other amoebae have been isolated during such disease outbreaks. Other amoebae isolated from salmon with gill disease in Norway include P. pemaquidensis, Tetramitus sp. and Vannella sp. Here we tested the pathogenicity of the first 2 species in challenge experiments. We found that even when clonal cultures of P. pemaquidensis established an infection on the gills of salmon, it failed to cause gill disease, while Tetramitus sp. appeared to be unable to establish a lasting infection on the gills of healthy salmon. The result of the challenge with P. pemaquidensis confirms the results of similar studies performed in the USA and in Australia. Tetramitus sp. is probably a common amoeba in the marine environment, and its presence on the gills of farmed salmon may just be accidental. Based on this study, we conclude that P. perurans is the only known amoeba in marine salmon farming associated with amoebic gill disease in Norway.
Collapse
Affiliation(s)
- Are Nylund
- Department of Biology University of Bergen, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
7
|
Lennox RJ, Eldøy SH, Vollset KW, Miller KM, Li S, Kaukinen KH, Isaksen TE, Davidsen JG. How pathogens affect the marine habitat use and migration of sea trout (Salmo trutta) in two Norwegian fjord systems. JOURNAL OF FISH DISEASES 2020; 43:729-746. [PMID: 32364277 DOI: 10.1111/jfd.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Wild fish are confronting changing pathogen dynamics arising from anthropogenic disturbance and climate change. Pathogens can influence animal behaviour and life histories, yet there are little such data from fish in the high north where pathogen dynamics may differ from comparatively southern regions. We aimed to compare the pathogen communities of 160 wild anadromous brown trout in two fjords in northern Norway and to determine whether pathogens influenced area use or return to spawn. Application of high-throughput qPCR detected 11 of the 46 pathogens screened for; most frequently encountered were Ichthyobodo spp., Flavobacterium psychrophilum and Candidatus Branchiomonas cysticola. The rate of returning to freshwater during the spawning season was significantly lower for the Skjerstadfjord fish. Piscichlamydia salmonis and F. psychrophilum were indicator species for the Skjerstadfjord and pathogen communities in the two fjords differed according to perMANOVA. Individual length, Fulton's condition factor and the time between first and last detection of the fish were not related to the presence of pathogens ordinated using non-metric multidimensional scaling (NMDS). However, there was evidence that pathogen load was correlated with the expression of smoltification genes, which are upregulated by salmonids in freshwater. Correspondingly, percentage of time in freshwater after release was longer for fish with greater pathogen burdens.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Sindre H Eldøy
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Knut W Vollset
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kristi M Miller
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Trond E Isaksen
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Jan G Davidsen
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Adamek M, Teitge F, Steinhagen D. Quantitative diagnostics of gill diseases in common carp: not as simple as it seems. DISEASES OF AQUATIC ORGANISMS 2019; 134:197-207. [PMID: 31120037 DOI: 10.3354/dao03374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During a disease outbreak, affected fish exhibit particular clinical signs, and the task in veterinary diagnostics is to identify the causative agent(s) as a prerequisite for appropriate treatment measures. In this study, we present an outbreak of a multifactorial gill disease in a cohort of ornamental koi Cyprinus carpio with gill necrosis as the main exterior clinical sign. By means of pathogen identification and determining pathogen abundance in various tissues, mortality of individual fish was found to be caused by different agents. Three out of 5 diseased individuals suffered from koi herpesvirus disease (KHVD) associated with a systemic infection with cyprinid herpesvirus 3 (CyHV-3), 1 fish succumbed to koi sleepy disease (KSD) caused by a high carp edema virus (CEV) load in the gills co-infected with CyHV-3 and flavobacteria, and the last fish had low loads of both viruses but high flavobacteria and Ichthyobodo burdens and most likely died from an interaction of these bacterial and parasitic agents. The results indicated that correct identification of the agent responsible for the observed clinical signs or mortality during co-infection might require quantitative determination of the abundance of the pathogens as well as detailed knowledge of the infection biology of these pathogens.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine, 30559 Hannover, Germany
| | | | | |
Collapse
|
9
|
Steigen A, Nylund A, Plarre H, Watanabe K, Karlsbakk E, Brevik Ø. Presence of selected pathogens on the gills of five wrasse species in western Norway. DISEASES OF AQUATIC ORGANISMS 2018; 128:21-35. [PMID: 29565251 DOI: 10.3354/dao03198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objective of this study was to identify gill pathogens in Labridae (wrasse) species used as cleaner fish to control salmon louse in western Norwegian aquaculture. Wrasse are often moved over long distances, raising issues of fish health, welfare and pathogen transmission. Histological examination and real-time RT-PCR analysis of the gills from Centrolabrus exoletus, Ctenolabrus rupestris, Labrus bergylta, L. mixtus and Symphodus melops revealed several pathogens: a new species of Ichthyobodo, Paramoeba perurans, microsporidia, trichodinids, Hatschekia spp., Candidatus Similichlamydia labri and 2 putative new species of Chlamydiae. Cand. S. labri or closely related bacteria were present on most wrasse specimens. Epitheliocysts on the gills of L. mixtus contained large inclusions (120 µm) with actiniae radiating from the inclusion membrane. A possible member of the Candidatus family Parilichlamydiaceae was present at a high prevalence on the gills of L. mixtus, L. bergylta and C. rupestris. Sequencing the 16S rRNA gene showed 93.9% similarity to Cand. S. labri and 96.8% similarity to Cand. Parilichlamydia carangidicola from the gills of Seriola lalandi. This bacterium probably represents a new species within the order Chlamydiales, family Cand. Parilichlamydiaceae. The other Chlamydiae detected on gills of S. melops could represent a new species in Cand. genus Syngnamydia. Ichthyobodo sp. and Paranucleospora theridion were detected on the gills of nearly all individuals, while Paramoeba spp. were detected on the gills of L. bergylta and L. mixtus. Trichodinids, microsporidia and parasitic copepods had low prevalence. Viral haemorrhagic septicaemia virus was not detected.
Collapse
Affiliation(s)
- A Steigen
- Department of Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
10
|
Nylund A, Hansen H, Brevik ØJ, Hustoft H, Markussen T, Plarre H, Karlsbakk E. Infection dynamics and tissue tropism of Parvicapsula pseudobranchicola (Myxozoa: Myxosporea) in farmed Atlantic salmon (Salmo salar). Parasit Vectors 2018; 11:17. [PMID: 29306320 PMCID: PMC5756351 DOI: 10.1186/s13071-017-2583-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background The myxosporean parasite Parvicapsula pseudobranchicola commonly infects farmed Atlantic salmon in northern Norway. Heavy infections are associated with pseudobranch lesions, runting and mortality in the salmon populations. The life-cycle of the parasite is unknown, preventing controlled challenge experiments. The infection dynamics, duration of sporogony, tissue tropism and ability to develop immunity to the parasite in farmed Atlantic salmon is poorly known. We conducted a field experiment, aiming at examining these aspects. Methods Infections in a group of Atlantic salmon were followed from before sea-transfer to the end of the production (604 days). Samples from a range of tissues/sites were analysed using real-time RT-PCR and histology, including in situ hybridization. Results All salmon in the studied population rapidly became infected with P. pseudobranchicola after sea-transfer medio August. Parasite densities in the pseudobranchs peaked in winter (November-January), and decreased markedly to March. Densities thereafter decreased further. Parasite densities in other tissues were low. Parasite stages were initially found to be intravascular in the pseudobranch, but occurred extravascular in the pseudobranch tissue at 3 months post-sea-transfer. Mature spores appeared in the pseudobranchs in the period with high parasite densities in the winter (late November-January), and were released (i.e. disappeared from the fish) in the period January-March. Clinical signs of parvicapsulosis (December-early February) were associated with high parasite densities and inflammation in the pseudobranchs. No evidence for reinfection was seen the second autumn in sea. Conclusions The main site of the parasite in Atlantic salmon is the pseudobranchs. Blood stages occur, but parasite proliferation is primarily associated with extravascular stages in the pseudobranchs. Disease and mortality (parvicapsulosis) coincide with the completion of sporogony. Atlantic salmon appears to develop immunity to P. pseudobranchicola. Further studies should focus on the unknown life-cycle of the parasite, and the pathophysiological effects of the pseudobranch infection that also could affect the eyes and vision. Electronic supplementary material The online version of this article (10.1186/s13071-017-2583-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Are Nylund
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Haakon Hansen
- Norwegian Veterinary Institute, PO Box 750 Sentrum, N-0106, Oslo, Norway
| | - Øyvind J Brevik
- Cermaq group AS, Dronning Eufemias gate16, P.O. Box 144, N-0102, Oslo, Norway
| | - Håvard Hustoft
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Turhan Markussen
- Norwegian Veterinary Institute, PO Box 750 Sentrum, N-0106, Oslo, Norway.,Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Heidrun Plarre
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Egil Karlsbakk
- Department of Biology, University of Bergen, 5020, Bergen, Norway. .,Institute of Marine Research, PO Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
11
|
Bass D, Stentiford GD, Littlewood D, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol 2015; 31:499-513. [DOI: 10.1016/j.pt.2015.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/05/2023]
|
12
|
Martins ML, Cardoso L, Marchiori N, Benites de Pádua S. Protozoan infections in farmed fish from Brazil: diagnosis and pathogenesis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2015; 24:1-20. [DOI: 10.1590/s1984-29612015013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
Abstract
The Phylum Protozoa brings together several organisms evolutionarily different that may act as ecto or endoparasites of fishes over the world being responsible for diseases, which, in turn, may lead to economical and social impacts in different countries. Apart from the recent advances for the diagnosis of fish diseases in Brazil, little is known on the protozoan parasites and their relationship with environment and host. This revision presents the most important protozoan parasites found in farmed fish from Brazil, not only with emphasis on its diagnosis, biology, transmission and host-parasite relationship, but also on some information that may be useful to researchers in determining the correct diagnosis in fish farms.
Collapse
Affiliation(s)
| | | | - Natalia Marchiori
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Brasil
| | | |
Collapse
|
13
|
Chettri JK, Kuhn JA, Jaafar RM, Kania PW, Møller OS, Buchmann K. Epidermal response of rainbow trout to Ichthyobodo necator: immunohistochemical and gene expression studies indicate a Th1-/Th2-like switch. JOURNAL OF FISH DISEASES 2014; 37:771-83. [PMID: 23952070 DOI: 10.1111/jfd.12169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/05/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no details on specific cellular and humoral reactions have been presented. By applying gene expression methods and immunohistochemical techniques, further details of immune processes in the affected skin can be presented. A population of I. necator was established in the laboratory and used to induce an experimental infection of juvenile rainbow trout. The course of infection was followed by sampling for parasite enumeration, immunohistochemistry (IHC) and quantitative PCR (qPCR) on days 0, 5, 9 and 14 post-infection. IHC showed a significant increase in the occurrence of IgM-positive cells in the skin of the infected fish, whereas IgT-positive cells were eliminated and the number of CD8-positive cells declined. qPCR studies supported the IHC findings showing a significant increase in IgM and a decrease in the CD8 gene expression. In addition, genes encoding innate immune genes such as lysozyme, SAA and cathelicidin 2 were up-regulated. Expression of cytokines (IL-1β, IL-4/13A, IL-6, IL-8, IL-10), the cell marker CD4 and the transcription factor GATA3 showed a significant increase after infection. Cytokine profiling including up-regulation of IL-4/13A and IL-10 genes and transcription factor GATA3 connected to the proliferation of IgM producing lymphocytes suggests a partial shift towards a Th2 response associated with the I. necator infection.
Collapse
Affiliation(s)
- J K Chettri
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Steigen A, Nylund A, Karlsbakk E, Akoll P, Fiksdal IU, Nylund S, Odong R, Plarre H, Semyalo R, Skår C, Watanabe K. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda. PLoS One 2013; 8:e66840. [PMID: 23826156 PMCID: PMC3691252 DOI: 10.1371/journal.pone.0066840] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Methods and Results Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Conclusions Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.
Collapse
Affiliation(s)
- Andreas Steigen
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
SUMMARYAquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth rates within animal protein production during recent decades and is expected to expand further at the same rate within the next 10 years. Control of diseases is one of the most prominent challenges if this production goal is to be reached. Apart from viral, bacterial, fungal and metazoan infections it has been documented that protozoan parasites affect health and welfare and thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae, dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans, Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites’ biology and impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on antiprotozoan immune responses in fish and a strategy for development of vaccines is presented.
Collapse
|