1
|
Liu S, Gao F, Wang R, Li W, Wang S, Zhang X. Molecular Characteristics of the Fatty-Acid-Binding Protein (FABP) Family in Spirometra mansoni-A Neglected Medical Tapeworm. Animals (Basel) 2023; 13:2855. [PMID: 37760255 PMCID: PMC10525997 DOI: 10.3390/ani13182855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The plerocercoid larva of the tapeworm Spirometra mansoni can parasitize humans and animals, causing serious parasitic zoonosis. The molecular characteristics and adaptive parasitism mechanism of Spirometra tapeworms are still unknown. In this study, 11 new members of the fatty-acid-binding protein (FABP) family were characterized in S. mansoni. A clustering analysis showed 11 SmFABPs arranged into two groups, and motif patterns within each group had similar organizations. RT-qPCR showed that SmFABPs were highly expressed in the adult stage, especially in gravid proglottid. A high genetic diversity of SmFABPs and relative conservation of FABPs in medical platyhelminthes were observed in the phylogenetic analysis. Immunolocalization revealed that natural SmFABP is mainly located in the tegument and parenchymal tissue of the plerocercoid and the uterus, genital pores, and cortex of adult worms. rSmFABP can build a more stable holo form when binding with palmitic acid to protect the hydrolytic sites of the protein. A fatty acid starvation induction test suggested that SmFABP might be involved in fatty acid absorption, transport, and metabolism in S. mansoni. The findings in this study will lay the foundation to better explore the underlying mechanisms of FABPs involved in Spirometra tapeworms as well as related taxa.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (F.G.); (R.W.); (W.L.); (S.W.)
| |
Collapse
|
2
|
Wang RJ, Li W, Liu SN, Wang SY, Jiang P, Wang ZQ, Zhang X. Integrated transcriptomic and proteomic analyses of plerocercoid and adult Spirometra mansoni reveal potential important pathways in the development of the medical tapeworm. Parasit Vectors 2023; 16:316. [PMID: 37670335 PMCID: PMC10481575 DOI: 10.1186/s13071-023-05941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Spirometra mansoni can parasitize animals and humans through food and water, causing parasitic zoonosis. Knowledge of the developmental process of S. mansoni is crucial for effective treatment; thus, it is important to characterize differential and specific proteins and pathways associated with parasite development. METHODS In this study, we performed a comparative proteomic analysis of the plerocercoid and adult stages using a tandem mass tag-based quantitative proteomic approach. Additionally, integrated transcriptomic and proteomic analyses were conducted to obtain the full protein expression profiles of different life cycle stages of the tapeworm. RESULTS Approximately 1166 differentially expressed proteins (DEPs) were identified in adults versus plerocercoids, of which 641 DEPs were upregulated and 525 were downregulated. Gene Ontology (GO), Clusters of Orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most DEPs related to genetic information processing and metabolism of energy in adults seem to be more activated. In the plerocercoid stage, compared to metabolism, genetic information processing appears more dynamic. Protein-protein interaction (PPI) revealed six key proteins (phosphomannomutase, glutathione transferase, malate dehydrogenase, cytoplasmic, 40S ribosomal protein S15, ribosomal protein L15 and 60S acidic ribosomal protein P2) that may play active roles in the growth and development of S. mansoni. Finally, the combination of transcriptomic and proteomic data suggested that three pathways (ubiquitin-mediated proteolysis, phagosome and spliceosome) and five proteins closely related to these pathways might have a significant influence in S. mansoni. CONCLUSIONS These findings contribute to increasing the knowledge on the protein expression profiles of S. mansoni and provide new insights into functional studies on the molecular mechanisms of the neglected medical tapeworm.
Collapse
Affiliation(s)
- Rui Jie Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wen Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Si Yao Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, Cui J, Wang ZQ, Zhang X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop 2022; 232:106483. [PMID: 35469749 DOI: 10.1016/j.actatropica.2022.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
The plerocercoid larvae of the tapeworm Spirometra erinaceieuropaei can parasitize humans and animals and cause serious parasitic zoonosis. However, our knowledge of the developmental process of S. erinaceieuropaei is still inadequate. To better characterize differential and specific genes and pathways associated with parasite development, a comparative transcriptomic analysis of the plerocercoid stage and the adult stage was performed using RNA-seq and de novo analysis. Approximately 13,659 differentially expressed genes (DEGs) were identified in plerocercoids versus adults, of which 6455 DEGs were upregulated and 7204 were downregulated. DEGs involved in parasite immunoevasion were more active in plerocercoid larvae than in adults, while DEGs associated with metabolic activity were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in protein phosphorylation/dephosphorylation and the Wnt signalling pathway were much more active in plerocercoid larvae. The molecular functions of upregulated unigenes in adults were mainly enriched for metabolic activities. qPCR validated that the expression levels of 10 selected DEGs were consistent with those in RNA-seq, confirming the accuracy of the RNA-seq results. Our results contributed to increasing the knowledge on the S. erinaceieuropaei gene repertoire and expression profile and also provide valuable resources for functional studies on the molecular mechanisms of S. erinaceieuropaei.
Collapse
Affiliation(s)
- Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Yi Su
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Qing Chen
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Wei Yu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Ru Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Parada C, Neri-Badillo IC, Vallecillo AJ, Segura E, Silva-Miranda M, Guzmán-Gutiérrez SL, Ortega PA, Coronado-Aceves EW, Cancino-Villeda L, Torres-Larios A, Aceves Sánchez MDJ, Flores Valdez MA, Espitia C. New Insights into the Methylation of Mycobacterium tuberculosis Heparin Binding Hemagglutinin Adhesin Expressed in Rhodococcus erythropolis. Pathogens 2021; 10:pathogens10091139. [PMID: 34578171 PMCID: PMC8467707 DOI: 10.3390/pathogens10091139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host–pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.
Collapse
Affiliation(s)
- Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Isabel Cecilia Neri-Badillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca 010220, Ecuador
| | - Erika Segura
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Mayra Silva-Miranda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Silvia Laura Guzmán-Gutiérrez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Paola A. Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Enrique Wenceslao Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Laura Cancino-Villeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Michel de Jesús Aceves Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Mario Alberto Flores Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Correspondence:
| |
Collapse
|
5
|
Tang CL, Li YH, Dai WQ, Zhu YW, Wu ZX, Li Y, Zuo T. GENE EXPRESSION LEVEL, IMMUNOLOCALIZATION, AND FUNCTION OF FATTY ACID-BINDING PROTEIN FROM SCHISTOSOMA JAPONICUM. J Parasitol 2021; 107:529-536. [PMID: 34198340 DOI: 10.1645/19-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Schistosoma japonicum fatty acid-binding protein (FABP) is used in the cell membrane to absorb and transport fatty acids, which cannot be resynthesized by the organism and combined with hydrophobic ligands. Among the 5 stages of the worm life cycle examined, FABP messenger ribonucleic acid (mRNA) expression was highest in male adult worms, followed by the liver-stage schistosome, and was the lowest in the lung-stage schistosome. The fabp gene-coding region was cloned and expressed to obtain recombinant S. japonicum FABP (rSjFABP) with a molecular weight of approximately 18 kDa. Mice were then immunized against rSjFABP to prepare anti-FABP serum. Using immunohistochemical techniques, FABP protein was found to localize to the eggshell, parenchyma, and digestive tract. Double-stranded RNA-mediated knockdown of FABP mRNA by RNA interference decreased the number of transcripts by >70%. Moreover, the egg production rate decreased, whereas the abnormal egg ratio was significantly increased in the FABP-silenced group compared with the negative control group (P < 0.05). These results demonstrate that FABP localizes in adults and in various stages. FABP contributes to the egg-laying capacity of adults, which may be related to the reproductive function of S. japonicum.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Yan-Hong Li
- Department of Endocrinology, Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Wen-Qin Dai
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhao-Xia Wu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Yan Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Tao Zuo
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| |
Collapse
|
6
|
Muthukumar R, Suttiprapa S, Mairiang E, Kessomboon P, Laha T, Smith JF, Sripa B. Effects of Opisthorchis viverrini infection on glucose and lipid profiles in human hosts: A cross-sectional and prospective follow-up study from Thailand. Parasitol Int 2019; 75:102000. [PMID: 31669292 DOI: 10.1016/j.parint.2019.102000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
Opisthorchis viverrini (OV) infection is endemic to the Northeast Thailand where the prevalence of Type 2 Diabetes mellitus (T2DM) is higher whilst the incidence of cardiovascular diseases (CVDs) is lower than the rest of Thailand. Helminth infection has both nutritional and immunological impact on their definitive hosts. Thus, a cross-sectional study was performed to see the effects of OV infection on glucose and lipid profiles. For this purpose, 200 each of OV infected and uninfected residents were recruited and their glycated hemoglobin (HbA1c), total cholesterol, triglycerides, low- and high-density lipoproteins (LDL and HDL) levels and anthropometric measurements, including BMI were examined. Then, as the prospective follow- up study, changes of those metabolic parameters of OV positive subjects (n = 120) before and after Praziquantel (PZQ) treatment were monitored for six months. The results showed that OV infection has a protective effect against hyperglycemia (OR 0.482 and p = .04) and metabolic disease risk group (OR 0.478 and p = .03). OV positive participants had lower HbA1c (5.5% Vs. 6.01%, p = .001) but higher HDL (54.07 Vs. 49.46 mg/dL, p = .001) than OV negative participants that are statistically significant. After PZQ treatment for OV-positive subjects, their serum levels of HbA1c (p < .05) and HDL (p < .05) significantly rose during the follow up. Apparently, OV infection lowers HbA1c but increases HDL in definitive human hosts.
Collapse
Affiliation(s)
- Radhakrishnan Muthukumar
- Graduate School, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Centre, Khon Kaen University, Khon Kaen, Thailand; Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pattapong Kessomboon
- Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - John F Smith
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Centre, Khon Kaen University, Khon Kaen, Thailand; Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
7
|
Sun Y, Li Y, Wu Y, Xiong L, Li C, Wang C, Li D, Lan J, Zhang Z, Jing B, Gu X, Xie Y, Lai W, Peng X, Yang G. Fatty-binding protein and galectin of Baylisascaris schroederi: Prokaryotic expression and preliminary evaluation of serodiagnostic potential. PLoS One 2017; 12:e0182094. [PMID: 28750056 PMCID: PMC5531546 DOI: 10.1371/journal.pone.0182094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Baylisascaris schroederi is a common parasite of captive giant pandas. The diagnosis of this ascariasis is normally carried out by a sedimentation-floatation method or PCR to detect eggs in feces, but neither method is suitable for early diagnosis. Fatty acid-binding protein (FABP) and galectin (GAL) exist in various animals and participate in important biology of parasites. Because of their good immunogenicity, they are seen as potential antigens for the diagnosis of parasitic diseases. In this study, we cloned and expressed recombinant FABP and GAL from B. schroederi (rBs-FABP and rBs-GAL) and developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate their potential for diagnosing ascariasis in giant pandas. Immunolocalization showed that Bs-FABP and Bs-GAL were widely distributed in adult worms. The ELISA based on rBs-FABP showed sensitivity of 95.8% (23/24) and specificity of 100% (12/12), and that based on rBs-GAL had sensitivity of 91.7% (22/24) and specificity of 100% (12/12).
Collapse
Affiliation(s)
- Ying Sun
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiran Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Caiwu Li
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Chengdong Wang
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Desheng Li
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Zhihe Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobing Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|