1
|
Ali AAB, Montasser AA, Mohamed SNA. Histopathological effects of the fruit extract of Citrullus colocynthis on the ovary of the tick Hyalomma dromedarii. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:275-295. [PMID: 38347254 DOI: 10.1007/s10493-023-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Hyalomma dromedarii is the predominant tick species parasitizing camels in Egypt which leads to mortalities in young animals that result in economic losses. It can transmit a lot of pathogens to animals and humans, such as the Crimean-Congo hemorrhagic fever virus, the Dhori virus, Kadam virus, Theileria annulata and spotted fever rickettsia. The continuous use of chemical acaricides has negative impact on the environment and almost led to acaricidal resistance, and hence the plant extracts represent alternative methods for controlling ticks. The present study was carried out to assess the histopathological effects on the ovary of fed female Hyalomma dromedarii following immersion in the ethanolic extract of fruits of Citrullus colocynthis (100 mg/mL). Light, scanning and transmission electron microscopy observations provided evidence that Citrullus colocynthis caused extensive damage to oocytes. Destruction of the internal organelles of oocytes, along with delay and/or inhibition of vitellogenesis were demonstrated. This is the first histological study that points to damage in H. dromedarii ovaries following treatment with the ethanolic extract of fruits of C. colocynthis. The data presented suggest that the plant extract affects the ovary either directly by entering the oocytes and/or indirectly by damaging the gut cells and digestion of blood that interfere with the development of oocytes, so it can be used as a promising agent for tick control.
Collapse
Affiliation(s)
- Asmaa Ali Baioumy Ali
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Ashraf Ahmed Montasser
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | | |
Collapse
|
2
|
Ogata S, Umemiya-Shirafuji R, Kusakisako K, Kakisaka K, Chatanga E, Hayashi N, Taya Y, Ohari Y, Pandey GS, Abdelbaset AE, Qiu Y, Matsuno K, Nonaka N, Nakao R. Investigation of vertical and horizontal transmission of Spiroplasma in ticks under laboratory conditions. Sci Rep 2023; 13:13265. [PMID: 37582809 PMCID: PMC10427632 DOI: 10.1038/s41598-023-39128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Many arthropods harbour bacterial symbionts, which are maintained by vertical and/or horizontal transmission. Spiroplasma is one of the most well-known symbionts of ticks and other arthropods. It is still unclear how Spiroplasma infections have spread in tick populations despite its high prevalence in some tick species. In this study, Ixodes ovatus, which has been reported to harbour Spiroplasma ixodetis at high frequencies, was examined for its vertical transmission potential under experimental conditions. Next, two isolates of tick-derived Spiroplasma, S. ixodetis and Spiroplasma mirum, were experimentally inoculated into Spiroplasma-free Haemaphysalis longicornis colonies and the presence of Spiroplasma in their eggs and larvae was tested. Our experimental data confirmed that S. ixodetis was transmitted to eggs and larvae in a vertical manner in the original host I. ovatus. In the second experiment, there was no significant difference in engorged weight, egg weight, and hatching rate between Spiroplasma-inoculated and control H. longicornis groups. This suggested that Spiroplasma infection does not affect tick reproduction. Spiroplasma DNA was only detected in the eggs and larvae derived from some individuals of S. ixodetis-inoculated groups. This has demonstrated the potential of horizontal transmission between different tick species. These findings may help understand the transmission dynamics of Spiroplasma in nature and its adaptation mechanism to host arthropod species.
Collapse
Affiliation(s)
- Shohei Ogata
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Laboratory of Molecular Targeted Therapeutics, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Kodai Kusakisako
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Keita Kakisaka
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Naoki Hayashi
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yurie Taya
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuma Ohari
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Gita Sadaula Pandey
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Abdelbaset Eweda Abdelbaset
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Department of Animal Medicine, Clinical Laboratory Diagnosis, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Department of Virology-I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| |
Collapse
|
3
|
Yang TS, LaDouceur EEB, Baumgartner WA, Marr HS, Karounos M, Robertson J, Whitehurst N, Miller LS, Birkenheuer AJ. A practical protocol to prepare paraffin-embedded whole tick histology sections. Ticks Tick Borne Dis 2023; 14:102162. [PMID: 36965259 PMCID: PMC10652274 DOI: 10.1016/j.ttbdis.2023.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/27/2023]
Abstract
Ticks are important ectoparasites that are capable of transmitting multiple classes of pathogens and are currently linked with many emerging tick-borne diseases worldwide. With increasing occurrences of tick-borne diseases in both humans and veterinary species, there is a continuous need to further our understanding of ticks and the pathogens they transmit. Whole tick histology provides a full scope of the tick internal anatomy, allowing researchers to examine multiple organs of interest in a single section. This is in contrast to other techniques that are more commonly utilized in tick-borne disease research, such as electron microscopy and light microscopy of individual organs. There is a lack of literature describing a practical technique to process whole tick histologic sections. Therefore, the current study aims to provide researchers with a workable protocol to prepare high quality paraffin-embedded whole tick histology sections. Amblyomma americanum adults were used as an example species for this study. After a series of pilot experiments using a combination of various fixatives, softening agents and processing techniques, we elected to compare two common fixatives, 10% neutral-buffered formalin (NBF) and Bouin's solution for whole ticks. Equal numbers of A. americanum unfed adults (n = 10/fixative) were processed identically and their whole tick histology coronal sections were individually scored. Higher scores were assigned to whole tick sections that contained more internal organs that are crucial for tick-borne disease research (e.g. salivary glands and midgut), high integrity of tissues and exoskeleton on the section, and good fixation and staining quality of the tissues. The mean total scores for Bouin's-fixed ticks were significantly higher compared to NBF-fixed ticks (p = 0.001). To further assess our preferred technique, we also demonstrated the feasibility of producing high quality whole tick sections for three other common tick species of medical importance (Rhipicephalus sanguineus, Ixodes scapularis, and Dermacentor variabilis) using Bouin's solution. While this technique may require further optimization for other tick species, we described a feasible protocol that uses commonly available tools, reagents and standard histologic equipment. This should allow any investigator to easily make adjustments to this protocol as needed based on their experimental goals.
Collapse
Affiliation(s)
- Tzushan S Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Elise E B LaDouceur
- Joint Pathology Center, Veterinary Pathology Services, Silver Spring, Maryland, USA
| | - Wes A Baumgartner
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Henry S Marr
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Michael Karounos
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - James Robertson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nathan Whitehurst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Laura S Miller
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Adam J Birkenheuer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
4
|
Zhang XY, Li SS, Chen KL, Yang C, Zhou XJ, Liu JZ, Zhang YK. Growth dynamics and tissue localization of a Coxiella-like endosymbiont in the tick Haemaphysalis longicornis. Ticks Tick Borne Dis 2022; 13:102005. [PMID: 35868196 DOI: 10.1016/j.ttbdis.2022.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 12/30/2022]
Abstract
A Coxiella-like endosymbiont (Coxiella-LE hereinafter) stably infects and influences Haemaphysalis longicornis development, indicating a mutualistic relationship of Coxiella-LE and ticks. To further elucidate the patterns of growth dynamics and tissue localization of Coxiella-LE in H. longicornis, 16S rRNA high-throughput sequencing, quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) were used in this study. The density of Coxiella-LE varied among different tick life stages, and fed female ticks had the highest density, followed by unfed female and unfed larval ticks. In the four organs that were dissected from fed female ticks, the ovary carried the highest density of Coxiella-LE, which was significantly different from salivary glands, midgut and Malpighian tubules. The high abundance of Coxiella-LE in fed female ticks and in the ovaries of fed female ticks in the bacterial microbiota analyses further confirmed that Coxiella-LE rapidly proliferates in the ovary after blood feeding. The ovaries continued to develop after engorgement and oviposition began on day 5, with a significant decrease in the density of Coxiella-LE in the ovaries occurring on day 7. FISH results indicated that Coxiella-LE is mainly colonized in the cytoplasm of the oocyte and proliferates with oogenesis. Coxiella-LE was expelled from the body with the mature oocyte, ensuring its vertical transmission. In the Malpighian tubules at different days after engorgement, the white flocculent materials were increasing, and the density of Coxiella-LE raised significantly on day 7. Unlike the localization pattern in the ovary, Coxiella-LE was initially distributed in a mass and continually increased during the development of Malpighian tubules until it filled the Malpighian tubules. These findings provide new insights on the growth dynamics and tissue localization of Coxiella-LE in ticks and are useful for further investigation on the interactions of symbiont and ticks .
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, Hebei 053000, China
| | - Kai-Li Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xue-Jiao Zhou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
5
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
6
|
Wang T, Wang T, Zhang M, Shi X, Zhang M, Wang H, Yang X, Yu Z, Liu J. The Ovarian Development Genes of Bisexual and Parthenogenetic Haemaphysalis longicornis Evaluated by Transcriptomics and Proteomics. Front Vet Sci 2021; 8:783404. [PMID: 34977217 PMCID: PMC8714755 DOI: 10.3389/fvets.2021.783404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
The tick Haemaphysalis longicornis has two reproductive groups: a bisexual group (HLBP) and a parthenogenetic group (HLPP). The comparative molecular regulation of ovarian development in these two groups is unexplored. We conducted transcriptome sequencing and quantitative proteomics on the ovaries of HLBP and HLPP, in different feeding stages, to evaluate the molecular function of genes associated with ovarian development. The ovarian tissues of HLBP and HLPP were divided into three feeding stages (early-fed, partially-fed and engorged). A total of 87,233 genes and 2,833 proteins were annotated in the ovary of H. longicornis in the different feeding stages. The differentially expressed genes (DEGs) of functional pathway analysis indicated that Lysosome, MAPK Signaling Pathway, Phagosome, Regulation of Actin Cytoskeleton, Endocytosis, Apoptosis, Insulin Signaling Pathway, Oxidative Phosphorylation, and Sphingolipid Metabolism were most abundant in the ovary of H. longicornis in the different feeding stages. Comparing the DEGs between HLBP and HLPP revealed that the ABC Transporter, PI3K-Akt Signaling Pathway and cAMP Signaling Pathway were the most enriched and suggested that the functions of signal transduction mechanisms may have changed during ovarian development. The functions of the annotated proteome of ovarian tissues were strongly correlated with the transcriptome annotation results, and these were further validated using quantitative polymerase chain reaction (qPCR). In the HLBP, the expression of cathepsin L, secreted proteins and glycosidase proteins was significantly up-regulated during feeding stages. In the HLPP, the lysozyme, yolk proteins, heat shock protein, glutathione S transferase, myosin and ATP synthase proteins were up-regulated during feeding stages. The significant differences of the gene expression between HLBP and HLPP indicated that variations in the genetic background and molecular function might exist in the two groups. These results provide a foundation for understanding the molecular mechanism and exploring the functions of genes in the ovarian development of different reproductive groups of H. longicornis.
Collapse
Affiliation(s)
- Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tongxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Zhao Y, Qu ZH, Jiao FC. De novo transcriptome sequencing and comparative profiling of the ovary in partially engorged and fully engorged Haemaphysalis flava ticks. Parasitol Int 2021; 83:102344. [PMID: 33894390 DOI: 10.1016/j.parint.2021.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
Haemaphysalis flava is the vector of several pathogens and has medical and veterinary importance. Transcriptome information of the ovary of H. flava is unavailable and limits understanding of its molecular basis of reproduction. We studied the ovary transcriptome of partially engorged and fully engorged H. flava using high-throughput RNA sequencing technology. A total of 53,025,360 and 57,942,890 clean reads were obtained with 7.95 GB and 8.69 GB clean bases in partially engorged ticks (PETs) and fully engorged ticks (FETs), respectively. The clean reads were assembled into 138,711 unigenes. A total of 72,043 unigenes (51.93%) were annotated and 66,668 unigenes (48.07%) were unknown. A total of 38,487 differentially expressed genes (DEGs) were found between PET and FET with 19,031 upregulated genes and 19,456 downregulated genes. The RNA-seq results were validated by qRT-PCR, including six upregulated genes and three downregulated genes. Some unigenes coding for nutrient transporters, proteases, and protease inhibitors were found and analyzed. This study was the first time to perform the transcriptome sequences of the ovary of partially engorged and fully engorged H. flava. The results can benefit the understanding of the molecular basis of ovary maturation and oogenesis of the H. flava and boost the development of the strategies for control of H. flava.
Collapse
Affiliation(s)
- Yu Zhao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Zhe-Hui Qu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China
| | - Feng-Chao Jiao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China.
| |
Collapse
|
8
|
Krasteva S, Jara M, Frias-De-Diego A, Machado G. Nairobi Sheep Disease Virus: A Historical and Epidemiological Perspective. Front Vet Sci 2020; 7:419. [PMID: 32793646 PMCID: PMC7387652 DOI: 10.3389/fvets.2020.00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Nairobi Sheep Disease virus (NSDv) is a zoonotic and tick-borne disease that can cause over 90% mortality in small ruminants. NSDv has historically circulated in East Africa and has recently emerged in the Asian continent. Despite efforts to control the disease, some regions, mostly in warmer climates, persistently report disease outbreaks. Consequently, it is necessary to understand how environmental tolerances and factors that influence transmission may shed light on its possible emergence in other regions. In this study, we quantified the available literature of NSDv from which occurrence data was extracted. In total, 308 locations from Uganda, Kenya, Tanzania, Somalia, India, Sri Lanka and China were coupled with landscape conditions to reconstruct the ecological conditions for NSDv circulation and identify areas of potential disease transmission risk. Our results identified areas suitable for NSDv in Ethiopia, Malawi, Zimbabwe, Southeastern China, Taiwan, and Vietnam. Unsuitable areas included Democratic Republic of Congo, Zambia, and Southern Somalia. In summary, soil moisture, livestock density, and precipitation predispose certain areas to NSDv circulation. It is critical to investigate the epidemiology of NSDv in order to promote better allocation of resources to control its spread in regions that are more at risk. This will help reduce disease impact worldwide as climate change will favor emergence of such vector-borne diseases in areas with dense small ruminant populations.
Collapse
Affiliation(s)
- Stephanie Krasteva
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Nwanade CF, Yu Z, Liu J. Botanical acaricides induced morphophysiological changes of reproductive and salivary glands in tick: A mini-review. Res Vet Sci 2020; 132:285-291. [PMID: 32707419 DOI: 10.1016/j.rvsc.2020.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Ticks are obligate hematophagous ectoparasites and important vectors of several pathogens of medical and veterinary significance, in addition to economic losses associated with their infestation. The primary method for the current control of tick is the use of synthetic acaricides, and many studies have focused on the tick control efficacy associated with the use of synthetic acaricides. However, the intensive use of these compounds has environmental and public health implications, in addition to the development of resistant tick populations. Over the years, studies have demonstrated the great potential of botanicals as an effective alternative in tick control. Most of the reviews on the acaricidal activity of botanicals focused on the effects relating to the development, reproduction, and mortality rate of ticks. Besides this acaricidal activity, botanicals can also affect the morphophysiology of the reproductive organs and the salivary glands that are important for tick procreation and survival. Effects relating to histopathological and cell ultra-structural alterations caused by botanical acaricides can be determined through microscopy techniques. Hence, the present mini-review focuses on studies dealing with morphophysiology changes of the reproductive system and the salivary gland of ticks exposed to botanical acaricides, with a view of expanding our knowledge for the future integrative application of botanical acaricides in tick control.
Collapse
Affiliation(s)
- Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
10
|
Umemiya-Shirafuji R, Mihara R, Fujisaki K, Suzuki H. Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasit Vectors 2019; 12:205. [PMID: 31060579 PMCID: PMC6501394 DOI: 10.1186/s13071-019-3469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitellogenin (Vg), a key molecule for oocyte development synthesized in the fat body during blood-feeding, is released into the hemolymph and then taken into the oocytes via Vg receptor (VgR) in ticks. Previously, we showed that VgR mRNA is expressed in the ovary at the adult stage of parthenogenetic Haemaphysalis longicornis ticks and its expression increases after blood-feeding. However, intracellular localization of VgR mRNA and protein at each developmental stage of oocytes during oogenesis remains largely unclear. METHODS mRNA and protein expression profiles of H. longicornis VgR (HlVgR) in the oocytes from the unfed to oviposition periods were analyzed by real-time PCR, in situ hybridization, and immunostaining. To elucidate the timing of the onset of Vg uptake, RNA interference (RNAi)-mediated gene silencing of HlVgR was performed. RESULTS In situ hybridization revealed that HlVgR mRNA was detected in the cytoplasm of stage I-III oocytes, and weaker positive signals for HlVgR mRNA were found in the cell periphery of stage IV and V oocytes. Likewise, HlVgR protein was detected by immunostaining in the cytoplasm of stage I-III oocytes and in the cell periphery of stage IV and V oocytes. Each developmental stage of the oocytes showed distinct patterns of mRNA and protein expression of HlVgR. Moreover, RNAi of HlVgR caused delayed or arrested development in the oocytes. The ovaries of control ticks showed all developmental stages of oocytes, whereas stage I-III oocytes were found in the ovaries of HlVgR-RNAi ticks at 5 days after engorgement. CONCLUSIONS These results suggest that active uptake of Vg is required for development from stage III to stage IV during oogenesis. Our data clearly revealed an apparent shift in the intracellular localization of VgR for both mRNA and protein level in oocytes during oogenesis.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ryo Mihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,National Agricultural and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
11
|
Toyota M, Hirama K, Suzuki T, Armstrong R, Okinaga T. Efficacy of orally administered fluralaner in dogs against laboratory challenge with Haemaphysalis longicornis ticks. Parasit Vectors 2019; 12:43. [PMID: 30658718 PMCID: PMC6339422 DOI: 10.1186/s13071-019-3306-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022] Open
Abstract
Background Haemaphysalis longicornis ticks represent an ectoparasitic health threat to dogs. This study evaluated the immediate and persistent efficacy of orally administered fluralaner for control of this tick. Methods Twenty-four dogs were sorted into 4 groups based on their tick carrying capacity measured in a preliminary challenge. Two days before treatment, dogs were challenged with Haemaphysalis longicornis and then at the time of treatment dogs received with oral fluralaner at 10, 25 or 50 mg/kg respectively to 3 of the groups, while the remaining group was sham treated. Ticks were counted and categorized on all dogs 2 days after treatment (4 days after challenge). Tick challenges were repeated at 28, 56, 84 and 112 days following treatment with tick counts 48 hours following each challenge. Tick control efficacy was evaluated by comparing the mean (geometric) total live attached and dead engorged ticks on each fluralaner treated group with the sham treated dogs. Results Oral fluralaner is highly acaricidal for H. longicornis that feed on treated dogs. The mean efficacy rate in dogs treated with fluralaner at the commercial dose range of 25 to 50 mg/kg was greater than 90% at 114 days after treatment, whereas efficacy at this time in dogs treated at 10 mg/kg was 79%. Conclusions Fluralaner administered orally to dogs within the commercial dose range at 25 to 50 mg/kg is effective for up to 114 days against laboratory challenge with H. longicornis ticks.
Collapse
Affiliation(s)
- Masanori Toyota
- R&D, Intervet K.K, 1-13-12 Kudan-kita, Chiyodak-ku, Tokyo, Japan
| | - Kyoko Hirama
- R&D, Intervet K.K, 1-13-12 Kudan-kita, Chiyodak-ku, Tokyo, Japan
| | - Tatsumi Suzuki
- Central Research Laboratory, Intervet K.K, 1103 Fukaya, Kasumigaura, Ibaraki, Japan
| | - Rob Armstrong
- Merck Animal Health, 2 Giralda Farms, Madison, NJ, USA.
| | - Tatsuyuki Okinaga
- Central Research Laboratory, Intervet K.K, 1103 Fukaya, Kasumigaura, Ibaraki, Japan
| |
Collapse
|