1
|
Rodríguez-Hidalgo R, Calvopiña M, Romero-Alvarez D, Montenegro-Franco M, Pavon D, Pointier JP, Benítez-Ortiz W, Celi-Erazo M. Triclabendazole efficacy, prevalence, and re-infection of Fasciola hepatica in bovine and ovine naturally infected in the Andes of Ecuador. Vet Parasitol Reg Stud Reports 2024; 47:100947. [PMID: 38199691 DOI: 10.1016/j.vprsr.2023.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
Fasciola spp., infections are distributed worldwide including the Andes region of Ecuador, affecting cattle, sheep, porcine, humans, and other herbivores. Triclabendazole (TCBZ) is commonly used to treat animal infections. However, prospective studies on TCBZ efficacy and fascioliosis prevalence have not been studied in the highlands of Ecuador. This study was performed in a rural community at central of the Ecuadorian Andes in freely roaming bovine and ovine aimed to 1) evaluate the efficacy of TCBZ by administering a single oral dose of 12 mg/kg body weight, 2) assess the prevalence of F. hepatica infection and 3) to monitor re-infections for a follow-up period of five months. In total, 122, 86, 111, 110, 89, and 90 and 49, 34, 47, 28, 27, and 31 stool samples were collected each month from bovines and ovine, respectively. Besides, 32 stool samples from porcine were also collected at the beginning of the study. Stools were microscopically analyzed by formalin-ether concentration method to detect F. hepatica ova. The prevalence of F. hepatica infections before treatment was 55,7% and 63,3% for bovine and ovine, respectively. The infection prevalence was of 22% in porcine. The efficacity of triclabendazole was 83% and 97% in bovines and ovine, respectively, at 30 days post-treatment. The re-infection reaches to 54,4% in bovines and 61,3% in ovine after five months. TCBZ had a high efficacy and could be used for bovines and ovine Fasciola infections in the study region; however, re-infections reach the initial prevalence after five months. Therefore, we recommend integrated control strategies, including chemotherapy with a single oral dose of TCBZ, vector control, and future drug resistance studies.
Collapse
Affiliation(s)
- R Rodríguez-Hidalgo
- Research Institute of Zoonoses (CIZ), Universidad Central del Ecuador, Quito, Ecuador; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador.
| | - M Calvopiña
- One Health Research Group, Facultad de Medicina, Universidad de las Américas (UDLA), Quito, Ecuador
| | - D Romero-Alvarez
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - M Montenegro-Franco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - D Pavon
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - J P Pointier
- PSL Research University, USR 3278 CNRS-EPHE, CRIOBE Université de Perpignan, Perpignan-Francia, France
| | - W Benítez-Ortiz
- Research Institute of Zoonoses (CIZ), Universidad Central del Ecuador, Quito, Ecuador; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - M Celi-Erazo
- Research Institute of Zoonoses (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
2
|
Garcia-Corredor D, Alvarado M, Pulido-Medellín M, Muñoz M, Cruz-Saavedra L, Hernández C, Giraldo JC, Vásquez-Arteaga LR, Morillo Coronado AC, Ramírez JD. Molecular characterization of Fasciola hepatica in endemic regions of Colombia. Front Vet Sci 2023; 10:1171147. [PMID: 37360412 PMCID: PMC10288157 DOI: 10.3389/fvets.2023.1171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fasciola hepatica is a zoonotic trematode that affects a wide range of hosts, including cattle, sheep, and goats. The economic impact of the parasite on the cattle industry is significant, with high losses reported worldwide. While its impact on human health was previously underestimated, recent years have seen a rise in fascioliasis cases, leading to increased interest among researchers globally. To characterize the genetic diversity and intraspecific variation of this parasite in South America, specifically in Colombia, we collected 105 adult parasites from cattle bile ducts in seven Colombian departments (Antioquia, Boyacá, Santander, Cauca, Cundinamarca, Nariño, Norte de Santander, and Santander) to assess the parasite's phenotypic analyses, genetic diversity, and population structure. A computer image analysis system (CIAS) was applied based on standardized morphological measurements. Liver-fluke size was studied by principal component analysis (PCA). DNA sequences were obtained for nuclear markers such as the 28S, β-tubulin 3, ITS1, ITS2, and the mitochondrial marker Cytochrome Oxidase I (COI). Multiple statistical tests were performed, and the parasite's population structure was analyzed. Maximum Likelihood (ML) phylogenetic reconstructions were carried out using the sequences obtained herein and sequences available in GenBank. Morphological results revealed that all the obtained individuals matched F. hepatica's morphology. There was no evidence of high genetic diversity, and the absence of genetic structure at the country-level was notable, possibly caused by a demographic expansion of this trematode in Colombia or the low resolution of the molecular markers employed. Future studies are still needed to unveil the genetic population structure of F. hepatica across the country.
Collapse
Affiliation(s)
- Diego Garcia-Corredor
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Mateo Alvarado
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Julio Cesar Giraldo
- Grupo de Investigación en Parasitología y Microbiología Tropical, Programa de Biología, Universidad INCCA de Colombia, Bogotá, Colombia
- Facultad de Medicina y Ciencias de la Salud, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Luis R. Vásquez-Arteaga
- Centro de Estudios en Microbiología y Parasitología, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
| | - Ana Cruz Morillo Coronado
- Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias Agropecuarias, Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Oso OG, Sunday JO, Odaibo AB. Temporal modelling of Lymnaea natalensis (Krauss, 1848) in tropical aquatic habitats. Onderstepoort J Vet Res 2023; 90:e1-e13. [PMID: 37265142 DOI: 10.4102/ojvr.v90i1.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 06/03/2023] Open
Abstract
Lymnaea natalensis is the only snail intermediate host of Fasciola gigantica, the causative agent of fascioliasis, in Nigeria. The species also serves as intermediate host for many other African trematode species of medical and veterinary importance, and it is found throughout the country. However, there is no detailed information on the factors that influence its distribution and seasonal abundance in the tropical aquatic habitats in Nigeria. This study used the geographic information system and remotely sensed data to develop models for predicting the distribution of L. natalensis in South-Western Nigeria. Both land surface temperature (LST) and normalised difference vegetation index (NDVI) were extracted from Landsat satellite imagery; other variables (slope and elevation) were extracted from a digital elevation model (DEM) while rainfall data were retrieved from the European Meteorology Research Programme (EMRP). These environmental variables were integrated into a geographic information system (GIS) to predict suitable habitats of L. natalensis using exploratory regression. A total of 1410 L. natalensis snails were collected vis-à-vis 22 sampling sites. Built-up areas recorded more L. natalensis compared with farmlands. There was no significant difference in the abundance of snails with season (p 0.05). The regression models showed that rainfall, NDVI, and slope were predictors of L. natalensis distribution. The habitats suitable for L. natalensis were central areas, while areas to the north and south were not suitable for L. natalensis.Contribution: The predictive risk models of L. natalensis in the study will be useful in mapping other areas where the snail sampling could not be conducted.
Collapse
Affiliation(s)
- Opeyemi G Oso
- Department of Zoology, Faculty of Science, University of Ibadan, Ibadan.
| | | | | |
Collapse
|
4
|
Nazari N, Rokni MB, Ichikawa-Seki M, Raeghi S, Hajjaran H, Falahi S, Hamzavi Y, Heydarian P, Davari A, Ghadiri K, Bozorgomid A. Assessment of genetic markers for multilocus sequence typing (MLST) of Fasciola isolates from Iran. Vet Med Sci 2023; 9:924-933. [PMID: 36343016 PMCID: PMC10029898 DOI: 10.1002/vms3.995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Several markers have been described to characterise the population structure and genetic diversity of Fasciola species (Fasciola hepatica (F. hepatica) and Fasciola gigantica (F. gigantica). However, sequence analysis of a single genomic locus cannot provide sufficient resolution for the genetic diversity of the Fasciola parasite whose genomes are ∼1.3 GB in size. OBJECTIVES To gain a better understanding of the gene diversity of Fasciola isolates from western Iran and to identify the most informative markers as candidates for epidemiological studies, five housekeeping genes were evaluated using a multilocus sequence typing (MLST) approach. METHODS MLST analysis was developed based on five genes (ND1, Pepck, Pold, Cyt b and HSP70) after genomic DNA extraction, amplification and sequencing. Nucleotide diversity and phylogeny analysis were conducted on both concatenated MLST loci and each individual locus. A median joining haplotype network was created to examine the haplotypes relationship among Fasciola isolates. RESULTS Thirty-three Fasciola isolates (19 F. hepatica and 14 F. gigantica) were included in the study. A total of 2971 bp was analysed for each isolate and 31 sequence types (STs) were identified among the 33 isolates (19 for F. hepatica and 14 for F. gigantica isolates). The STs produced 44 and 42 polymorphic sites and 17 and 14 haplotypes for F. hepatica and F. gigantica, respectively. Haplotype diversity was 0.982 ± 0.026 and 1.000 ± 0.027 and nucleotide diversity was 0.00200 and 0.00353 ± 0.00088 for F. hepatica and F. gigantica, respectively. There was a high degree of genetic diversity with a Simpson's index of diversity of 0.98 and 1 for F. hepatica and F. gigantica, respectively. While HSP70 and Pold haplotypes from Fasciola species were separated by one to three mutational steps, the haplotype networks of ND1 and Cyt b were more complex and numerous mutational steps were found, likely due to recombination. CONCLUSIONS Although HSP70 and Pold genes from F. gigantica were invariant over the entire region of sequence coverage, MLST was useful for investigating the phylogenetic relationship of Fasciola species. The present study also provided insight into markers more suitable for phylogenetic studies and the genetic structure of Fasciola parasites.
Collapse
Affiliation(s)
- Naser Nazari
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohamad Bagher Rokni
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Saber Raeghi
- Department of Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yazdan Hamzavi
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Heydarian
- Department of Medical Parasitology and Mycology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Afshin Davari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyphobad Ghadiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Okamoto E, Tashiro M, Ortiz P, Mohanta UK, Hobán C, Murga-Moreno CA, Angulo-Tisoc JM, Ichikawa-Seki M. Development of novel DNA marker for species discrimination of Fasciola flukes based on the fatty acid binding protein type I gene. Parasit Vectors 2022; 15:379. [PMID: 36266710 PMCID: PMC9585863 DOI: 10.1186/s13071-022-05538-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background Multiplex polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) for nuclear phosphoenolpyruvate carboxykinase (pepck) and polymerase delta (pold), respectively, have been used to differentiate Fasciola hepatica, F. gigantica, and hybrid Fasciola flukes. However, discrimination errors have been reported in both methods. This study aimed to develop a multiplex PCR based on a novel nuclear marker, the fatty acid binding protein type I (FABP) type I gene. Methods Nucleotide sequence variations of FABP type I were analyzed using DNA samples of F. hepatica, F. gigantica, and hybrid Fasciola flukes obtained from 11 countries in Europe, Latin America, Africa, and Asia. A common forward primer for F. hepatica and F. gigantica and two specific reverse primers for F. hepatica and F. gigantica were designed for multiplex PCR. Results Specific fragments of F. hepatica (290 bp) and F. gigantica (190 bp) were successfully amplified using multiplex PCR. However, the hybrid flukes contained fragments of both species. The multiplex PCR for FABP type I could precisely discriminate the 1312 Fasciola samples used in this study. Notably, no discrimination errors were observed with this novel method. Conclusions Multiplex PCR for FABP type I can be used as a species discrimination marker in place of pepck and pold. The robustness of the species-specific primer should be continuously examined using a larger number of Fasciola flukes worldwide in the future since nucleotide substitutions in the primer regions may cause amplification errors. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05538-7.
Collapse
Affiliation(s)
| | | | - Pedro Ortiz
- Universidad Nacional de Cajamarca, Cajamarca, Peru
| | | | | | | | | | | |
Collapse
|
6
|
Itagaki T, Hayashi K, Ohari Y. The causative agents of fascioliasis in animals and humans: Parthenogenetic Fasciola in Asia and other regions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105248. [PMID: 35183754 DOI: 10.1016/j.meegid.2022.105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Parthenogenetic Fasciola is the causative agent of fascioliasis in animals and humans and is widely distributed in Asian countries, such as Japan, South Korea, China, Vietnam, Thailand, the Philippines, Myanmar, Bangladesh, Nepal, and India. Parthenogenetic Fasciola geographically originated from central and eastern China, where it exists between the habitats of Fasciola hepatica and Fasciola gigantica; it likely appeared thousands of years ago following hybridization between F. hepatica and F. gigantica. Parthenogenetic Fasciola consists of diploids and triploids that possess nuclear genome of both F. hepatica and F. gigantica and mitochondrial genome of either F. hepatica or F. gigantica. Maternal parents of parthenogenetic Fasciola are either F. hepatica having Fh-C4 haplotype or F. gigantica having Fg-C2 haplotype in mitochondrial NADH dehydrogenase subunit 1 (ND1) nucleotide sequences. Parthenogenetic Fasciola flukes with the Fh-C4 haplotype have spread from China to South Korea and Japan, whereas the flukes with the Fg-C2 haplotype have not only spread to Korea and Japan but also southward to Vietnam, Thailand, the Philippines, Myanmar, Bangladesh, Nepal, and India. Parthenogenetic Fasciola can be distinguished from F. hepatica and F. gigantica using combinational DNA sequence analysis of nuclear phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold) along with mitochondrial ND1 markers. The establishment of parthenogenetic Fasciola is expected as follows: parthenogenetic diploids with the Fh-C4 and Fg-C2 haplotypes first appeared based on single or multiple interspecific hybridization events; subsequently, parthenogenetic triploids emerged via backcross events between the maternal parthenogenetic diploid and either paternal bisexual F. hepatica or F. gigantica. Parthenogenetic Fasciola diploids and triploids then survived for thousands of years by clonal parthenogenetic reproduction, and generated descendants with ND1 haplotypes, which were derived from the Fh-C4 and Fg-C2 due to nucleotide substitution. Thus, the emergence of parthenogenetic Fasciola may be due to extremely uncommon and accidental events. Parthenogenetic Fasciola should be treated as a new asexual hybrid species.
Collapse
Affiliation(s)
- Tadashi Itagaki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
| | - Kei Hayashi
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan
| | - Yuma Ohari
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
7
|
DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals (Basel) 2021; 11:ani11092495. [PMID: 34573461 PMCID: PMC8472080 DOI: 10.3390/ani11092495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Fasciolid flukes collected from sheep and cattle in Ecuador showed a high diversity in DNA sequences whose analyses indicated introductions from South America, European and North American countries. These results agree with the numerous livestock importations performed by Ecuador. Abnormally big-sized liver flukes were found in Ecuadorian sheep. The morphometric phenotypic CIAS study showed that its size maximum and mean very pronouncedly and significantly surpassed those of the Fasciola hepatica populations from South America and Spain and proved to be intermediate between standard F. hepatica and F. gigantica populations. Such a feature is only known in intermediate fasciolid forms in Old World areas where the two species and their specific lymnaeid snail vectors overlap. This argues about a past hybridization after F. gigantica importation from Pakistan and/or introduction of intermediate hybrids previously generated in USA. The lack of heterozygotic rDNA ITS positions differentiating the two species, and of introgressed fragments and heteroplasmic positions in mtDNA genes, indicate a post-hybridization period sufficiently long as for rDNA concerted evolution to complete homogenization and mtDNA to return to homoplasmy. The vector specificity filter due to Radix absence should act as a driving force in accelerating such lineage evolution. Public health implications are finally emphasized. Abstract Fascioliasis is a disease caused by Fasciola hepatica worldwide transmitted by lymnaeid snails mainly of the Galba/Fossaria group and F. gigantica restricted to parts of Africa and Asia and transmitted by Radix lymnaeids. Concern has recently risen regarding the high pathogenicity and human infection capacity of F. gigantica. Abnormally big-sized fasciolids were found infecting sheep in Ecuador, the only South American country where F. gigantica has been reported. Their phenotypic comparison with F. hepatica infecting sheep from Peru, Bolivia and Spain, and F. gigantica from Egypt and Vietnam demonstrated the Ecuadorian fasciolids to have size-linked parameters of F. gigantica. Genotyping of these big-sized fasciolids by rDNA ITS-2 and ITS-1 and mtDNA cox1 and nad1 and their comparison with other countries proved the big-sized fasciolids to belong to F. hepatica. Neither heterozygotic ITS position differentiated the two species, and no introgressed fragments and heteroplasmic positions in mtDNA were found. The haplotype diversity indicates introductions mainly from other South American countries, Europe and North America. Big-sized fasciolids from Ecuador and USA are considered to be consequences of F.gigantica introductions by past livestock importations. The vector specificity filter due to Radix absence should act as driving force in the evolution in such lineages.
Collapse
|
8
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|