1
|
Šťastný D, Balleková A, Tahotná D, Pokorná L, Holič R, Humpolíčková J, Griač P. Characterization of two Plasmodium falciparum lipid transfer proteins of the Sec14/CRAL-TRIO family. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159572. [PMID: 39426587 DOI: 10.1016/j.bbalip.2024.159572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is followed by dramatic modifications of erythrocytes properties, including de novo formation of new membrane systems. Lipid transfer proteins from both the parasite and the host cell are most likely an important part of those membrane remodeling processes. Using bioinformatics and in silico structural analysis, we have identified five P. falciparum potential lipid transfer proteins containing cellular retinaldehyde binding - triple functional domain (CRAL-TRIO). Two of these proteins, C6KTD4, encoded by the PF3D7_0629900 gene and Q8II87, encoded by the PF3D7_1127600 gene, were studied in more detail. In vitro lipid transfer assays using recombinant C6KTD4 and Q8II87 confirmed that these proteins are indeed bona fide lipid transfer proteins. C6KTD4 transfers sterols, phosphatidylinositol 4,5 bisphosphate, and, to some degree, also phosphatidylcholine between two membrane compartments. Q8II87 possesses phosphatidylserine transfer activity in vitro. In the yeast model, the expression of P. falciparumQ8II87 protein partially complements the absence of Sec14p and its closest homologue, Sfh1p. C6KTD4 protein can substitute for the collective essential function of oxysterol-binding related proteins. According to published whole genome studies in P. falciparum, absence of C6KTD4 and Q8II87 proteins has severe consequences for parasite viability. Therefore, CRAL-TRIO lipid transfer proteins of P. falciparum are potential targets of novel antimalarials, in search for which the yeast model expressing these proteins could be a valuable tool.
Collapse
Affiliation(s)
- Dominik Šťastný
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Alena Balleková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holič
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
2
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Thathy V, Hackett F, Yeo T, Li VL, Muir R, Faucher F, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets. Cell Chem Biol 2024; 31:1714-1728.e10. [PMID: 39137783 PMCID: PMC11457795 DOI: 10.1016/j.chembiol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA; Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Hackett F, Yeo T, Li VL, Muir RK, Faucher FF, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed Alkyl/Aryl Phosphonates Identify Metabolic Serine Hydrolases as Antimalarial Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575224. [PMID: 38260474 PMCID: PMC10802587 DOI: 10.1101/2024.01.11.575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan K Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
- Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Vliegenthart-Jongbloed KJ, Koelewijn R, Tielens AGM, Sauerwein RW, van Hellemond JJ, van Genderen PJJ. The decrease in plasma cholesterol during Plasmodium falciparum infections is not caused by cholesterol utilization by the parasites but by an infection-induced acute-phase response. J Infect 2023; 86:617-619. [PMID: 36868319 DOI: 10.1016/j.jinf.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Affiliation(s)
- Klaske J Vliegenthart-Jongbloed
- Department of Medical Microbiology and Infectious Diseases & The Institute for Tropical Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rob Koelewijn
- Department of Medical Microbiology and Infectious Diseases & The Institute for Tropical Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases & The Institute for Tropical Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases & The Institute for Tropical Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Perry J J van Genderen
- Department of Medical Microbiology and Infectious Diseases & The Institute for Tropical Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
8
|
Riera-Ferrer E, Piazzon MC, Del Pozo R, Palenzuela O, Estensoro I, Sitjà-Bobadilla A. A bloody interaction: plasma proteomics reveals gilthead sea bream (Sparus aurata) impairment caused by Sparicotyle chrysophrii. PARASITES & VECTORS 2022; 15:322. [PMID: 36088326 PMCID: PMC9463799 DOI: 10.1186/s13071-022-05441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Background Sparicotylosis is an enzootic parasitic disease that is well established across the Mediterranean Sea. It is caused by the polyopisthocotylean monogenean Sparicotyle chrysophrii and affects the gills of gilthead sea bream (GSB; Sparus aurata). Current disease management, mitigation and treatment strategies are limited against sparicotylosis. To successfully develop more efficient therapeutic strategies against this disease, understanding which molecular mechanisms and metabolic pathways are altered in the host is critical. This study aims to elucidate how S. chrysophrii infection modulates the plasma proteome of GSB and to identify the main altered biological processes involved. Methods Experimental infections were conducted in a recirculating aquaculture system (RAS) in which naïve recipient GSB ([R]; 70 g; n = 50) were exposed to effluent water from S. chrysophrii-infected GSB (98 g; n = 50). An additional tank containing unexposed naïve fish (control [C]; 70 g; n = 50) was maintained in parallel, but with the open water flow disconnected from the RAS. Haematological and infection parameters from sampled C and R fish were recorded for 10 weeks. Plasma samples from R fish were categorised into three different groups according to their infection intensity, which was based on the number of worms fish−1: low (L: 1–50), medium (51–100) and high (H: > 100). Five plasma samples from each category and five C samples were selected and subjected to a SWATH-MS proteome analysis. Additional assays on haemoglobin, cholesterol and the lytic activity of the alternative complement pathway were performed to validate the proteome analysis findings. Results The discriminant analysis of plasma protein abundance revealed a clear separation into three groups (H, M/L and C). A pathway analysis was performed with the differentially quantified proteins, indicating that the parasitic infection mainly affected pathways related to haemostasis, the immune system and lipid metabolism and transport. Twenty-two proteins were significantly correlated with infection intensity, highlighting the importance of apolipoproteins, globins and complement component 3. Validation assays of blood and plasma (haemoglobin, cholesterol and lytic activity of alternative complement pathway) confirmed these correlations. Conclusions Sparicotylosis profoundly alters the haemostasis, the innate immune system and the lipid metabolism and transport in GSB. This study gives a crucial global overview of the pathogenesis of sparicotylosis and highlights new targets for further research. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05441-1.
Collapse
|
9
|
Turiel-Silva M, Wendt C, Silva EO, Rodrigues APD, de Souza W, Miranda K, Diniz J. Three-dimensional Architecture of Cyrilia lignieresi Gametocyte-stage Development Inside Red Blood Cells. J Eukaryot Microbiol 2022; 69:e12894. [PMID: 35152525 DOI: 10.1111/jeu.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
The Haemogregarinidae family (Apicomplexa: Adeleina) comprises hemoprotozoa that infect mammals, birds, amphibians, fish and reptiles. Some morphological characteristics of the Cyrilia lignieresi have been described previously, but the parasite-erythrocyte relationship is still poorly understood. In order to understand the structural architecture of Cyrilia lignieresi-infected red blood cells, electron microscopy-based three-dimensional reconstruction was carried out using TEM as well as FIB-SEM tomography. Results showed that development of the macrogametocyte-stage inside the red blood cell is related to an increase in cleft-like structures in the host cell cytoplasm. Furthermore, other aspects related to parasite intraerythrocytic development were explored by 3D visualization techniques. We observed the invagination of a large extension of the Inner Membrane Complex on the parasite body, which results from or induces a folding of the posterior end of the parasite. Small tubular structures were seen associated with areas related to Inner Membrane Complex folding. Taken together, results provide new information on the remodeling of erythrocytes induced by the protozoan C. lignieresi.
Collapse
Affiliation(s)
- Maíra Turiel-Silva
- Universidade do Estado do Pará, Centro de Ciëncias Biológicas e da Saúde, Marabá-PA, Brazil.,Instituto Evandro Chagas, Laboratório de Microscopia Eletrônica, Belém-PA, Brazil
| | - Camila Wendt
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil
| | - Edilene O Silva
- Universidade Federal do Pará, Laboratório de Biologia Estrutural, Belém-PA, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil
| | - Ana Paula Drummond Rodrigues
- Instituto Evandro Chagas, Laboratório de Microscopia Eletrônica, Belém-PA, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil
| | - Kildare Miranda
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro-RJ, Brazil
| | - José Diniz
- Instituto Evandro Chagas, Laboratório de Microscopia Eletrônica, Belém-PA, Brazil
| |
Collapse
|