1
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Lu Y, Dong CZ, Bao D, Zhong C, Liu K, Chen L, Wang W, Yang B. The Thr105Ile Variant (rs11558538) in the Histamine N-Methyltransferase Gene May Be Associated with Reduced Risk of Parkinson's Disease: A Meta-analysis. Genet Test Mol Biomarkers 2022; 26:543-549. [DOI: 10.1089/gtmb.2021.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yongxia Lu
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Cheng Zhen Dong
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Dongmei Bao
- Department of Neurology, Hanyuan People's Hospital, Yaan, Sichuan Province, P.R. China
| | - Chengqing Zhong
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Keting Liu
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Lifan Chen
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Wei Wang
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Álvarez I, Pastor P, Agúndez JAG. Genomic Markers for Essential Tremor. Pharmaceuticals (Basel) 2021; 14:ph14060516. [PMID: 34072005 PMCID: PMC8226734 DOI: 10.3390/ph14060516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
There are many reports suggesting an important role of genetic factors in the etiopathogenesis of essential tremor (ET), encouraging continuing the research for possible genetic markers. Linkage studies in families with ET have identified 4 genes/loci for familial ET, although the responsible gene(s) have not been identified. Genome-wide association studies (GWAS) described several variants in LINGO1, SLC1A2, STK32B, PPARGC1A, and CTNNA3, related with ET, but none of them have been confirmed in replication studies. In addition, the case-control association studies performed for candidate variants have not convincingly linked any gene with the risk for ET. Exome studies described the association of several genes with familial ET (FUS, HTRA2, TENM4, SORT1, SCN11A, NOTCH2NLC, NOS3, KCNS2, HAPLN4, USP46, CACNA1G, SLIT3, CCDC183, MMP10, and GPR151), but they were found only in singular families and, again, not found in other families or other populations, suggesting that some can be private polymorphisms. The search for responsible genes for ET is still ongoing.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain;
- Correspondence: ; Tel.: +34-636-96-83-95; Fax: +34-913-28-07-04
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Ignacio Álvarez
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - Pau Pastor
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Dai C, Zhang Y, Zhan X, Tian M, Pang H. Association Analyses of SNAP25, HNMT, FCHSD1, and DBH Single-Nucleotide Polymorphisms with Parkinson's Disease in a Northern Chinese Population. Neuropsychiatr Dis Treat 2021; 17:1689-1695. [PMID: 34079266 PMCID: PMC8166815 DOI: 10.2147/ndt.s304062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Sequencing potentially causal and susceptible genes and genome-wide association studies in samples from Parkinson's disease (PD) patients has revealed several related loci. The genes for synaptosome-associated protein of 25 kDa (SNAP25), histamine-N-methyltransferase (HNMT), FCH and double SH3 domains 1 (FCHSD1) and dopamine β-hydroxylase (DBH) are candidate loci and have not been studied in a northern Chinese population. We explored the genetic distribution of four single-nucleotide polymorphisms (rs3746544, rs11558538, rs456998, rs129882) located on SNAP25, HNMT, FCHSD1 and DBH, respectively. PATIENTS AND METHODS A total of 330 patients with sporadic PD and 332 healthy controls (HCs) were recruited from a northern Chinese population. Polymerase chain reaction restriction fragment length polymorphism was used to genotype these four SNPs. RESULTS After statistical analyses and correction of the genotyping results, the mutant-allele T in rs456998 of FCHSD1 was found to be significantly related to reducing the PD risk (P = 0.029, OR = 0.754, 95% CI = 0.586-0.971, power = 0.591). However, rs3746544, rs11558538, and rs129882 did not show an association with PD. CONCLUSION FCHSD1 rs456998 may have a protective role in PD in a northern Chinese population, but more studies are needed to support this suggestion.
Collapse
Affiliation(s)
- Cuiyun Dai
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yichi Zhang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoni Zhan
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Meihui Tian
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
5
|
Abstract
Highlights In the current review, we thoroughly reviewed 74 identified articles regarding genes and genetic loci that confer susceptibility to ET. Over 50 genes/genetic loci have been examined for possible association with ET, but consistent results failed to be reported raising the need for collaborative multiethnic studies. Background: Essential tremor (ET) is a common movement disorder, which is mainly characterized by bilateral tremor (postural and/or kinetic) in the upper limbs, with other parts of the body possibly involved. While the pathophysiology of ET is still unclear, there is accumulating evidence indicating that genetic variability may be heavily involved in ET pathogenesis. This review focuses on the role of genetic risk factors in ET susceptibility. Methods: The PubMed database was searched for articles written in English, for studies with humans with ET, controls without ET, and genetic variants. The terms “essential tremor” and “polymorphism” (as free words) were used during search. We also performed meta-analyses for the most examined genetic variants. Results: Seventy four articles concerning LINGO1, LINGO2, LINGO4, SLC1A2, STK32B, PPARGC1A, CTNNA3, DRD3, ALAD, VDR, HMOX1, HMOX2, LRRK1,LRRK2, GBA, SNCA, MAPT, FUS, CYPsIL17A, IL1B, NOS1, ADH1B, TREM2, RIT2, HNMT, MTHFR, PPP2R2B, GSTP1, PON1, GABA receptors and GABA transporter, HS1BP3, ADH2, hSKCa3 and CACNL1A4 genes, and ETM genetic loci were included in the current review. Results from meta-analyses revealed a marginal association for the STK32B rs10937625 and a marginal trend for association (in sensitivity analysis) for the LINGO1 rs9652490, with ET. Discussion: Quite a few variants have been examined for their possible association with ET. LINGO1 rs9652490 and STK32B rs10937625 appear to influence, to some extent, ET susceptibility. However, the conflicting results and the lack of replication for many candidate genes raise the need for collaborative multiethnic studies.
Collapse
|
6
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
7
|
Histamine N-Methyltransferase in the Brain. Int J Mol Sci 2019; 20:ijms20030737. [PMID: 30744146 PMCID: PMC6386932 DOI: 10.3390/ijms20030737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood–brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.
Collapse
|
8
|
Chen Y, Cao B, Ou R, Wei Q, Chen X, Zhao B, Wu Y, Song W, Shang HF. Determining the Effect of the HNMT, STK39, and NMD3 Polymorphisms on the Incidence of Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy in Chinese Populations. J Mol Neurosci 2018; 64:574-580. [DOI: 10.1007/s12031-018-1048-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
9
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2016; 95:e4147. [PMID: 27399132 PMCID: PMC5058861 DOI: 10.1097/md.0000000000004147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. RESULTS The meta-analysis included 4 eligible case-control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene-dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46-0.81) for the total group, and 0.63 (0.45-0.88) for Caucasian patients. CONCLUSION The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias,” Universidad de Alcalá, Alcalá de Henares, Madrid
| | | | | | - José A.G. Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
10
|
Yang X, Liu C, Zhang J, Han H, Wang X, Liu Z, Xu Y. Association of histamine N-methyltransferase Thr105Ile polymorphism with Parkinson's disease and schizophrenia in Han Chinese: a case-control study. PLoS One 2015; 10:e0119692. [PMID: 25768024 PMCID: PMC4359088 DOI: 10.1371/journal.pone.0119692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) and schizophrenia (SCZ) are frequent central nervous disorders that have unclear etiologies but that show similarities in their pathogenesis. Since elevated histamine levels in the brain have been associated with PD and SCZ, we wanted to explore whether the Thr105Ile substitution in the histamine N-methyltransferase gene (HNMT-Thr105Ile), which impairs histamine degradation, is associated with either disease. We used the ligase detection reaction to genotype a case-control cohort of Han Chinese patients with PD or SCZ and healthy controls at the HNMT-Thr105Ile locus. The Ile allele was associated with reduced risk of PD (OR 0.516, 95%CI 0.318 to 0.838, p = 0.007) and of SCZ (OR 0.499, 95%CI 0.288 to 0.865, p = 0.011). Genotype frequencies and minor allele frequencies were similar between patients and controls when we compared males with females or early-onset patients with late-onset ones. Genotype and allele frequencies were not significantly different between PD patients with dyskinesia and PD patients without dyskinesia. Our results suggest that the heterozygous Thr/Ile genotype at the HNMT-Thr105Ile locus and the minor Ile105 allele protect against PD and SCZ in Han Chinese.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China
| | - Chuanxin Liu
- College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
- Department of Psychiatry, Jining Medical College, Jining, Shandong Province, 272051, PR China
| | - Jinxiang Zhang
- Department of Psychiatry, Jining Mental Hospital, Jining, Shandong Province, 272051, PR China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, PR China
| | - Xiuyan Wang
- Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Zhoulin Liu
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China
- * E-mail:
| |
Collapse
|
11
|
Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 2014; 47:101-21. [DOI: 10.1016/j.neubiorev.2014.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/02/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
|
12
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Lorenzo-Betancor O, Pastor P, Agúndez JAG. Update on genetics of essential tremor. Acta Neurol Scand 2013; 128:359-71. [PMID: 23682623 DOI: 10.1111/ane.12148] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/25/2022]
Abstract
Despite the research, few advances in the etiopathogenesis on essential tremor (ET) have been made to date. The high frequency of positive family history of ET and the observed high concordance rates in monozygotic compared with dizygotic twins support a major role of genetic factors in the development of ET. In addition, a possible role of environmental factors has been suggested in the etiology of ET (at least in non-familial forms). Although several gene variants in the LINGO1 gene may increase the risk of ET, to date no causative mutated genes have been identified. In this review, we summarize the studies performed on families with tremor, twin studies, linkage studies, case-control association studies, and exome sequencing in familial ET.
Collapse
Affiliation(s)
- F. J. Jiménez-Jiménez
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
| | - H. Alonso-Navarro
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
| | - E. García-Martín
- Department of Biochemistry and Molecular Biology; University of Extremadura; Cáceres Spain
- AMGenomics; Edificio Tajo, Avda. de la Universidad s/n; Cáceres Spain
| | - O. Lorenzo-Betancor
- Neurogenetics Laboratory; Division of Neurosciences; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona Spain
- Department of Neurology; Clínica Universidad de Navarra; University of Navarra School of Medicine; Pamplona Spain
| | - P. Pastor
- Neurogenetics Laboratory; Division of Neurosciences; Center for Applied Medical Research (CIMA); University of Navarra; Pamplona Spain
- Department of Neurology; Clínica Universidad de Navarra; University of Navarra School of Medicine; Pamplona Spain
- CIBERNED; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas; Instituto de Salud Carlos III; Madrid Spain
| | - J. A. G. Agúndez
- AMGenomics; Edificio Tajo, Avda. de la Universidad s/n; Cáceres Spain
- Department of Pharmacology; University of Extremadura; Cáceres Spain
| |
Collapse
|
13
|
Kellermayer B, Polgar N, Pal J, Banati M, Maasz A, Kisfali P, Hosszu Z, Juhasz A, Jensen HB, Tordai A, Rozsa C, Melegh B, Illes Z. Association of myasthenia gravis with polymorphisms in the gene of histamine N-methyltransferase. Hum Immunol 2013; 74:1701-4. [PMID: 23932992 DOI: 10.1016/j.humimm.2013.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/17/2013] [Accepted: 07/19/2013] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Histamine N-methyltransferase (HNMT) is the main metabolizing enzyme of histamine. Histamine modulates immune responses and plays a role in the pathogenesis of autoimmune disorders. METHODS The non-synonymous HNMT C314T polymorphism and the A939G single-nucleotide polymorphism (SNP) influencing HNMT mRNA stability were genotyped in 213 patients with myasthenia gravis (MG) and 342 healthy controls. RESULTS The carrier frequency of the A allele of the A939G SNP was over-represented among patients with anti-AchR and anti-Titin antibodies (P = 0.05 and P = 0.004, respectively); the presence of the minor G allele was protective against anti-AchR and anti-Titin positive MG (OR = 0.67 and OR = 0.54, respectively). The combination of the G allele carrier status with wild-type C314C homozygosity was also protective against MG (OR = 0.55, P = 0.008) and against the development of anti-AchR antibodies (OR = 0.37, P = 0.01). DISCUSSION The A939G HNMT polymorphism is associated with autoimmune MG, while no association with C314T SNP was found.
Collapse
Affiliation(s)
- Blanka Kellermayer
- Division of Clinical and Experimental Neuroimmunology, Department of Neurology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Testa CM. Key issues in essential tremor genetics research: Where are we now and how can we move forward? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2013; 3. [PMID: 23450143 PMCID: PMC3582856 DOI: 10.7916/d8q23z0z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/04/2012] [Indexed: 01/06/2023]
Abstract
Background Genetics research is an avenue towards understanding essential tremor (ET). Advances have been made in genetic linkage and association: there are three reported ET susceptibility loci, and mixed but growing data on risk associations. However, causal mutations have not been forthcoming. This disappointing lack of progress has opened productive discussions on challenges in ET and specifically ET genetics research, including fundamental assumptions in the field. Methods This article reviews the ET genetics literature, results to date, the open questions in ET genetics and the current challenges in addressing them. Results Several inherent ET features complicate genetic linkage and association studies: high potential phenocopy rates, inaccurate tremor self-reporting, and ET misdiagnoses are examples. Increasing use of direct examination data for subjects, family members, and controls is one current response. Smaller moves towards expanding ET phenotype research concepts into non-tremor features, clinically disputed ET subsets, and testing phenotype features instead of clinical diagnosis against genetic data are gradually occurring. The field has already moved to considering complex trait mechanisms requiring detection of combinations of rare genetic variants. Hypotheses may move further to consider novel mechanisms of inheritance, such as epigenetics. Discussion It is an exciting time in ET genetics as investigators start moving past assumptions underlying both phenotype and genetics experimental contributions, overcoming challenges to collaboration, and engaging the ET community. Multicenter collaborative efforts comprising rich longitudinal prospective phenotype data and neuropathologic analysis combined with the latest in genetics experimental design and technology will be the next wave in the field.
Collapse
Affiliation(s)
- Claudia M Testa
- Virginia Commonwealth University, Parkinson's and Movement Disorders Center, Richmond Virginia, USA
| |
Collapse
|
15
|
Pino-Ángeles A, Reyes-Palomares A, Melgarejo E, Sánchez-Jiménez F. Histamine: an undercover agent in multiple rare diseases? J Cell Mol Med 2013; 16:1947-60. [PMID: 22435405 PMCID: PMC3822965 DOI: 10.1111/j.1582-4934.2012.01566.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histamine is a biogenic amine performing pleiotropic effects in humans, involving tasks within the immune and neuroendocrine systems, neurotransmission, gastric secretion, cell life and death, and development. It is the product of the histidine decarboxylase activity, and its effects are mainly mediated through four different G-protein coupled receptors. Thus, histamine-related effects are the results of highly interconnected and tissue-specific signalling networks. Consequently, alterations in histamine-related factors could be an important part in the cause of multiple rare/orphan diseases. Bearing this hypothesis in mind, more than 25 rare diseases related to histamine physiopathology have been identified using a computationally assisted text mining approach. These newly integrated data will provide insight to elucidate the molecular causes of these rare diseases. The data can also help in devising new intervention strategies for personalized medicine for multiple rare diseases.
Collapse
|
16
|
García-Martín E, Martínez C, Alonso-Navarro H, Benito-León J, Lorenzo-Betancor O, Pastor P, López-Alburquerque T, Samaranch L, Lorenzo E, Agúndez JAG, Jiménez-Jiménez FJ. H1-MAPT and the risk for familial essential tremor. PLoS One 2012; 7:e41581. [PMID: 22911817 PMCID: PMC3402423 DOI: 10.1371/journal.pone.0041581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022] Open
Abstract
The most frequent MAPT H1 haplotype is associated with the risk for developing progressive supranuclear palsy and other neurodegenerative diseases such as Parkinson’s disease. A recent report suggests that the MAPT H1 is associated with the risk for developing essential tremor. We wanted to confirm this association in a different population. We analyzed the distribution of allelic and genotype frequencies of rs1052553, which is an H1/H2 SNP, in 200 subjects with familial ET and 291 healthy controls. rs1052553 genotype and allelic frequencies did not differ significantly between subjects with ET and controls and were unrelated with the age at onset of tremor or gender, and with the presence of head, voice, chin, and tongue tremor. Our study suggests that the MAPT H1 rs1052553 is not associated with the risk for developing familial ET in the Spanish population.
Collapse
Affiliation(s)
- Elena García-Martín
- Department of Biochemistry and Molecular Biology, Universidad de Extremadura, Cáceres, Spain
| | - Carmen Martínez
- Department of Pharmacology, Universidad de Extremadura, Badajoz, Spain
| | - Hortensia Alonso-Navarro
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias” Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Madrid, Spain
| | - Julián Benito-León
- Service of Neurology, Hospital Doce de Octubre, Department of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oswaldo Lorenzo-Betancor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine, Pamplona, Spain
| | - Pau Pastor
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine, Pamplona, Spain
| | | | - Lluis Samaranch
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Elena Lorenzo
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | | | - Félix Javier Jiménez-Jiménez
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias” Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
17
|
Shan L, Bossers K, Luchetti S, Balesar R, Lethbridge N, Chazot PL, Bao AM, Swaab DF. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson's patients: a postmortem study. Neurobiol Aging 2011; 33:1488.e1-13. [PMID: 22118942 DOI: 10.1016/j.neurobiolaging.2011.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/07/2011] [Accepted: 10/21/2011] [Indexed: 11/29/2022]
Abstract
Earlier studies showed neuronal histamine production in the hypothalamic tuberomamillary nucleus to be unchanged in Parkinson's disease (PD), whereas the histamine levels and innervation in the substantia nigra (SN) increased. In the present study we used quantitative polymerase chain reaction (qPCR) to assess the changes in the histaminergic system in the SN, caudate nucleus (CN), and putamen (PU) in 7 PD patients and 7 controls. The messenger RNA (mRNA) expression of the histamine receptor-3 (H(3)R), which was localized immunocytochemically in the large pigmented neurons, was significantly decreased in the SN in PD, while histamine receptor-4 (H(4)R)-mRNA expression showed a significant increase in caudate nucleus and PU. In addition, significantly increased mRNA levels of histamine methyltransferase (HMT), a key enzyme involved in histamine metabolism, were found in the SN and in the PU in PD. Moreover, in the SN, the histamine methyltransferase-mRNA showed a strong negative correlation with PD disease duration. Our observations imply the presence of local changes in the histaminergic system that may contribute to PD pathology, and may thus provide a rationale for possible novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Current World Literature. Curr Opin Neurol 2011; 24:409-13. [DOI: 10.1097/wco.0b013e3283499d51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Palada V, Terzić J, Mazzulli J, Bwala G, Hagenah J, Peterlin B, Hung AY, Klein C, Krainc D. Histamine N-methyltransferase Thr105Ile polymorphism is associated with Parkinson's disease. Neurobiol Aging 2011; 33:836.e1-3. [PMID: 21794955 DOI: 10.1016/j.neurobiolaging.2011.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/10/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
Abstract
Histamine is a central neurotransmitter degraded by histamine-N-methyltransferase (HNMT). Several abnormalities in the histaminergic system were found in patients with Parkinson's disease (PD), thus we tested the possible association of a Thr105Ile functional polymorphism in HNMT with PD. A total of 913 patients with PD and 958 controls were genotyped using a TaqMan RT-PCR Genotyping Assay (Foster City, California, USA). Lower frequency of HNMT Ile105 allele that is associated with decreased enzymatic activity was found in patients compared with controls (χ(2) = 11.65; p = 0.0006). We performed meta-analysis to confirm the association of Thr105Ile functional polymorphism with PD. Our results indicate that lower HNMT activity plays a role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Vinko Palada
- Mediterranean Institute for Life Science, Split, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
New developments in the use of histamine and histamine receptors. Curr Allergy Asthma Rep 2011; 11:94-100. [PMID: 21104347 DOI: 10.1007/s11882-010-0163-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Histamine and the histamine receptors are important regulators of a plethora of biological processes, including immediate hypersensitivity reactions and acid secretion in the stomach. In these roles, antihistamines have found widespread therapeutic applications, while the last receptor to be discovered, the H4 histamine receptor, has become a major target of novel therapeutics. Recent studies involving human genetic variance and the development of mice lacking specific receptors or the ability to generate histamine have shown roles for the histamine pathway that extend well beyond the established roles. These include identification of previously unappreciated mechanisms through which histamine regulates inflammation in allergy, as well as roles in autoimmunity, infection, and pain. As a result, antihistamines may have wider applications in the future than previously predicted.
Collapse
|