1
|
Caron NS, Byrne LM, Lemarié FL, Bone JN, Aly AEE, Ko S, Anderson C, Casal LL, Hill AM, Hawellek DJ, McColgan P, Wild EJ, Leavitt BR, Hayden MR. Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice. Transl Neurodegener 2024; 13:50. [PMID: 39380076 PMCID: PMC11460072 DOI: 10.1186/s40035-024-00443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD. METHODS Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology. RESULTS Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF. CONCLUSIONS Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fanny L Lemarié
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey N Bone
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Austin M Hill
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - David J Hawellek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Peter McColgan
- Roche Products Ltd., Welwyn Garden City, AL7 1TW, United Kingdom
| | - Edward J Wild
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Ruiz-Barrio I, Vázquez-Oliver A, Puig-Davi A, Rivas-Asensio E, Perez-Perez J, Fernandez-Vizuete C, Horta-Barba A, Olmedo-Saura G, Salvat-Rovira N, Sampedro F, Vacchi E, Melli G, Pagonabarraga J, Kulisevsky J, Martinez-Horta S. Skin Tau Quantification as a Novel Biomarker in Huntington's Disease. Mov Disord 2024. [PMID: 39192729 DOI: 10.1002/mds.29989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Emerging research implicates tau protein dysregulation in the pathophysiology of Huntington's disease. OBJECTIVE This study investigated skin tau quantification as a potential biomarker for Huntington's disease and its correlation with disease burden outcomes. METHODS In this cross-sectional study, we measured skin tau levels using enzyme-linked immunosorbent assay in 23 Huntington's disease mutations carriers and eight control subjects, examining group discrimination, correlations with genetic markers, clinical assessments, and neuroimaging data. Brain atrophy was quantified by both volumetric measurements from brain segmentation and a voxel-based morphometry approach. RESULTS Our findings showed elevated skin tau levels in manifest Huntington's disease compared with premanifest and healthy controls. These levels correlated with CAG repeat length, CAG-Age-Product score, composite Unified Huntington's Disease Rating Scale Total Motor Score, cognitive assessments, and disease-related cortical and subcortical volumes, all independent of age and gender. Using skin tau levels in cluster analysis along with genetic and clinical measures led to improved subject stratification, providing enhanced distinction and validity of clusters. CONCLUSIONS This study not only confirms the feasibility of skin tau quantification in Huntington's disease but also establishes its potential as a biomarker for enhancing group classification and assessing disease severity across the Huntington's disease spectrum, opening new directions in biomarker research. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Iñigo Ruiz-Barrio
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Anna Vázquez-Oliver
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Arnau Puig-Davi
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Elisa Rivas-Asensio
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Jesus Perez-Perez
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | | | - Andrea Horta-Barba
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Nil Salvat-Rovira
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Frederic Sampedro
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Radiology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Elena Vacchi
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Javier Pagonabarraga
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| |
Collapse
|
3
|
Martinez‐Horta S, Perez‐Perez J, Perez‐Gonzalez R, Sampedro F, Horta‐Barba A, Campolongo A, Rivas‐Asensio E, Puig‐Davi A, Pagonabarraga J, Kulisevsky J. Cognitive phenotype and neurodegeneration associated with Tau in Huntington's disease. Ann Clin Transl Neurol 2024; 11:1160-1171. [PMID: 38544341 PMCID: PMC11093246 DOI: 10.1002/acn3.52031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE The clinical phenotype of Huntington's disease (HD) can be very heterogeneous between patients, even when they share equivalent CAG repeat length, age, or disease burden. This heterogeneity is especially evident in terms of the cognitive profile and related brain changes. To shed light on the mechanisms participating in this heterogeneity, the present study delves into the association between Tau pathology and more severe cognitive phenotypes and brain damage in HD. METHODS We used a comprehensive neuropsychological examination to characterize the cognitive phenotype of a sample of 30 participants with early-to-middle HD for which we also obtained 3 T structural magnetic resonance image (MRI) and cerebrospinal fluid (CSF). We quantified CSF levels of neurofilament light chain (NfL), total Tau (tTau), and phosphorylated Tau-231 (pTau-231). Thanks to the cognitive characterization carried out, we subsequently explored the relationship between different levels of biomarkers, the cognitive phenotype, and brain integrity. RESULTS The results confirmed that more severe forms of cognitive deterioration in HD extend beyond executive dysfunction and affect processes with clear posterior-cortical dependence. This phenotype was in turn associated with higher CSF levels of tTau and pTau-231 and to a more pronounced pattern of posterior-cortical atrophy in specific brain regions closely linked to the cognitive processes affected by Tau. INTERPRETATION Our findings reinforce the association between Tau pathology, cognition, and neurodegeneration in HD, emphasizing the need to explore the role of Tau in the cognitive heterogeneity of the disease.
Collapse
Affiliation(s)
- Saul Martinez‐Horta
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jesús Perez‐Perez
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Rocío Perez‐Gonzalez
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Instituto de Neurociencias UMH‐CSICAlicanteSpain
| | - Frederic Sampedro
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Neuroradiology unit, Radiology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Andrea Horta‐Barba
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- European Huntington's Disease Network (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Arnau Puig‐Davi
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| |
Collapse
|
4
|
Korpela S, Sundblom J, Zetterberg H, Constantinescu R, Svenningsson P, Paucar M, Niemelä V. Cerebrospinal fluid glial fibrillary acidic protein, in contrast to amyloid beta protein, is associated with disease symptoms in Huntington's disease. J Neurol Sci 2024; 459:122979. [PMID: 38569376 DOI: 10.1016/j.jns.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Huntington's disease (HD) is a hereditary neurodegenerative disease, currently lacking disease-modifying treatments. Biomarkers are needed for objective assessment of disease progression. Evidence supports both complex protein aggregation and astrocyte activation in HD. This study assesses the 42 amino acid long amyloid beta (Aβ42) and glial fibrillary acidic protein (GFAP) as potential biomarkers in the cerebrospinal fluid (CSF) of HD mutation carriers. METHODS CSF from participants was obtained from three sites in Sweden. Clinical symptoms were graded with the composite Unified Huntington's disease rating scale (cUHDRS). Protein concentrations were measured using ELISA. Pearson correlations were calculated to assess disease progression association. Results were adjusted for age and collection site. RESULTS The study enrolled 28 manifest HD patients (ManHD), 13 premanifest HD gene-expansion carriers (PreHD) and 20 controls. Aβ42 levels did not differ between groups and there was no correlation with measures of disease progression. GFAP concentration was higher in ManHD (424 ng/l, SD 253) compared with both PreHD (266 ng/l, SD 92.4) and controls (208 ng/l, SD 83.7). GFAP correlated with both cUHDRS (r = -0.77, p < 0.001), and 5-year risk of disease onset (r = 0.70, p = 0.008). CONCLUSION We provide evidence that indicates CSF Aβ42 has limited potential as a biomarker for HD. GFAP is a potential biomarker of progression in HD. Validation in larger cohorts measuring GFAP in blood and CSF would be of interest.
Collapse
Affiliation(s)
- Sara Korpela
- Department of Medicine, Neurology, Västerås Central Hospital, Västerås, Sweden
| | - Jimmy Sundblom
- Department of Medical Sciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Radu Constantinescu
- Institute of Neuroscience and Physiology, Clinical Neuroscience, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Valter Niemelä
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
van de Zande NA, Bulk M, Najac C, van der Weerd L, de Bresser J, Lewerenz J, Ronen I, de Bot ST. Study protocol of IMAGINE-HD: Imaging iron accumulation and neuroinflammation with 7T-MRI + CSF in Huntington's disease. Neuroimage Clin 2023; 39:103450. [PMID: 37327706 PMCID: PMC10509525 DOI: 10.1016/j.nicl.2023.103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Strong evidence suggests a significant role for iron accumulation in the brain in addition to the well-documented neurodegenerative aspects of Huntington's disease (HD). The putative mechanisms by which iron is linked to the HD pathogenesis are multiple, including oxidative stress, ferroptosis and neuroinflammation. However, no previous study in a neurodegenerative disease has linked the observed increase of brain iron accumulation as measured by MRI with well-established cerebrospinal fluid (CSF) and blood biomarkers for iron accumulation, or with associated processes such as neuroinflammation. This study is designed to link quantitative data from iron levels and neuroinflammation metabolites obtained from 7T MRI of HD patients, with specific and well-known clinical biofluid markers for iron accumulation, neurodegeneration and neuroinflammation. Biofluid markers will provide quantitative measures of overall iron accumulation, neurodegeneration and neuroinflammation, while MRI measurements on the other hand will provide quantitative spatial information on brain pathology, neuroinflammation and brain iron accumulation, which will be linked to clinical outcome measures. METHODS This is an observational cross-sectional study, IMAGINE-HD, in HD gene expansion carriers and healthy controls. We include premanifest HD gene expansion carriers and patients with manifest HD in an early or moderate stage. The study includes a 7T MRI scan of the brain, clinical evaluation, motor, functional, and neuropsychological assessments, and sampling of CSF and blood for the detection of iron, neurodegenerative and inflammatory markers. Quantitative Susceptibility Maps will be reconstructed using T2* weighted images to quantify brain iron levels and Magnetic Resonance Spectroscopy will be used to obtain information about neuroinflammation by measuring cell-specific intracellular metabolites' level and diffusion. Age and sex matched healthy subjects are included as a control group. DISCUSSION Results from this study will provide an important basis for the evaluation of brain iron levels and neuroinflammation metabolites as an imaging biomarker for disease stage in HD and their relationship with the salient pathomechanisms of the disease on the one hand, and with clinical outcome on the other.
Collapse
Affiliation(s)
| | - Marjolein Bulk
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | | |
Collapse
|
7
|
Petrozziello T, Huntress SS, Castillo-Torres AL, Quinn JP, Connors TR, Auger CA, Mills AN, Kim SE, Liu S, Mahmood F, Boudi A, Wu M, Sapp E, Kivisäkk P, Sunderesh SR, Pouladi MA, Arnold SE, Hyman BT, Rosas HD, DiFiglia M, Pinto RM, Kegel-Gleason K, Sadri-Vakili G. Age-dependent increase in tau phosphorylation at serine 396 in Huntington's disease pre-frontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.03.23290851. [PMID: 37333415 PMCID: PMC10274990 DOI: 10.1101/2023.06.03.23290851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.
Collapse
|
8
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Petrozziello T, Huntress SS, Castillo-Torres AL, Quinn JP, Connors TR, Auger CA, Mills AN, Kim SE, Liu S, Mahmood F, Boudi A, Wu M, Sapp E, Kivisäkk P, Sunderesh SR, Pouladi MA, Arnold SE, Hyman BT, Rosas HD, DiFiglia M, Mouro Pinto R, Kegel-Gleason K, Sadri-Vakili G. Age-Dependent Increase in Tau Phosphorylation at Serine 396 in Huntington's Disease Prefrontal Cortex. J Huntingtons Dis 2023; 12:267-281. [PMID: 37694372 DOI: 10.3233/jhd-230588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Sommer S Huntress
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | | | - James P Quinn
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | | | - Corinne A Auger
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Sophia Liu
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Farah Mahmood
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Adel Boudi
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Muzhou Wu
- Center for Genomic Medicine, MassGeneral Brigham, Boston, MA, USA
| | - Ellen Sapp
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Pia Kivisäkk
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | | | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Steven E Arnold
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Marian DiFiglia
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Ricardo Mouro Pinto
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
- Center for Genomic Medicine, MassGeneral Brigham, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| |
Collapse
|
10
|
Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease. J Neurosci 2020; 41:780-796. [PMID: 33310753 DOI: 10.1523/jneurosci.1865-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Therapeutics that lower HTT have shown preclinical promise and are being evaluated in clinical trials. However, clinical assessment of brain HTT lowering presents challenges. We have reported that mutant HTT (mHTT) in the CSF of HD patients correlates with clinical measures, including disease burden as well as motor and cognitive performance. We have also shown that lowering HTT in the brains of HD mice results in correlative reduction of mHTT in the CSF, prompting the use of this measure as an exploratory marker of target engagement in clinical trials. In this study, we investigate the mechanisms of mHTT clearance from the brain in adult mice of both sexes to elucidate the significance of therapy-induced CSF mHTT changes. We demonstrate that, although neurodegeneration increases CSF mHTT concentrations, mHTT is also present in the CSF of mice in the absence of neurodegeneration. Importantly, we show that secretion of mHTT from cells in the CNS followed by glymphatic clearance from the extracellular space contributes to mHTT in the CSF. Furthermore, we observe secretion of wild type HTT from healthy control neurons, suggesting that HTT secretion is a normal process occurring in the absence of pathogenesis. Overall, our data support both passive release and active clearance of mHTT into CSF, suggesting that its treatment-induced changes may represent a combination of target engagement and preservation of neurons.SIGNIFICANCE STATEMENT: Changes in CSF mutant huntingtin (mHTT) are being used as an exploratory endpoint in HTT lowering clinical trials for the treatment of Huntington disease (HD). Recently, it was demonstrated that intrathecal administration of a HTT lowering agent leads to dose-dependent reduction of CSF mHTT in HD patients. However, little is known about how HTT, an intracellular protein, reaches the extracellular space and ultimately the CSF. Our findings that HTT enters CSF by both passive release and active secretion followed by glymphatic clearance may have significant implications for interpretation of treatment-induced changes of CSF mHTT in clinical trials for HD.
Collapse
|
11
|
Sawant N, Reddy PH. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression. J Alzheimers Dis 2020; 72:S177-S191. [PMID: 31744007 DOI: 10.3233/jad-190851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of our article is to critically assess the role of phosphorylated tau in Huntington's disease (HD) progression and pathogenesis. HD is a fatal and pure genetic disease, characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. HD is caused by expanded polyglutamine (polyQ or CAG) repeats within the exon 1 of the HD gene. HD has an autosomal dominant pattern of inheritance with genetic anticipation. Although the HD gene was discovered 26 years ago, there is no complete understanding of how mutant huntingtin (mHTT) selectively targets medium spiny projection neurons in the basal ganglia of the brain in patients with HD. Several years of intense research revealed that multiple cellular changes are involved in disease process, including transcriptional dysregulation, mitochondrial abnormalities and impaired bioenergetics, defective axonal transport, calcium dyshomeostasis, synaptic damage and caspase, and NMDAR activations. Recent research also revealed that phosphorylated tau and defective GSK-3β signaling are strongly linked to progression of the disease. This article summarizes the recent developments of cellular and pathological changes in disease progression of HD. This article also highlights recent developments in phosphorylated tau and defective GSK-3β signaling and the involvement of calcineurin in HD progression and pathogenesis.
Collapse
Affiliation(s)
- Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S, Parker C, Lowe J, Nair A, O'Callaghan C, Langley C, Papoutsi M, McColgan P, Estevez-Fraga C, Fayer K, Wellington H, Rodrigues FB, Byrne LM, Heselgrave A, Hyare H, Sampaio C, Zetterberg H, Zhang H, Wild EJ, Rees G, Robbins TW, Sahakian BJ, Langbehn D, Tabrizi SJ. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol 2020; 19:502-512. [PMID: 32470422 PMCID: PMC7254065 DOI: 10.1016/s1474-4422(20)30143-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disease-modifying treatments are in development for Huntington's disease; crucial to their success is to identify a timepoint in a patient's life when there is a measurable biomarker of early neurodegeneration while clinical function is still intact. We aimed to identify this timepoint in a novel cohort of young adult premanifest Huntington's disease gene carriers (preHD) far from predicted clinical symptom onset. METHODS We did the Huntington's disease Young Adult Study (HD-YAS) in the UK. We recruited young adults with preHD and controls matched for age, education, and sex to ensure each group had at least 60 participants with imaging data, accounting for scan fails. Controls either had a family history of Huntington's disease but a negative genetic test, or no known family history of Huntington's disease. All participants underwent detailed neuropsychiatric and cognitive assessments, including tests from the Cambridge Neuropsychological Test Automated Battery and a battery assessing emotion, motivation, impulsivity and social cognition (EMOTICOM). Imaging (done for all participants without contraindications) included volumetric MRI, diffusion imaging, and multiparametric mapping. Biofluid markers of neuronal health were examined using blood and CSF collection. We did a cross-sectional analysis using general least-squares linear models to assess group differences and associations with age and CAG length, relating to predicted years to clinical onset. Results were corrected for multiple comparisons using the false discovery rate (FDR), with FDR <0·05 deemed a significant result. FINDINGS Data were obtained between Aug 2, 2017, and April 25, 2019. We recruited 64 young adults with preHD and 67 controls. Mean ages of participants were 29·0 years (SD 5·6) and 29·1 years (5·7) in the preHD and control groups, respectively. We noted no significant evidence of cognitive or psychiatric impairment in preHD participants 23·6 years (SD 5·8) from predicted onset (FDR 0·22-0·87 for cognitive measures, 0·31-0·91 for neuropsychiatric measures). The preHD cohort had slightly smaller putamen volumes (FDR=0·03), but this did not appear to be closely related to predicted years to onset (FDR=0·54). There were no group differences in other brain imaging measures (FDR >0·16). CSF neurofilament light protein (NfL), plasma NfL, and CSF YKL-40 were elevated in this far-from-onset preHD cohort compared with controls (FDR<0·0001, =0·01, and =0·03, respectively). CSF NfL elevations were more likely in individuals closer to expected clinical onset (FDR <0·0001). INTERPRETATION We report normal brain function yet a rise in sensitive measures of neurodegeneration in a preHD cohort approximately 24 years from predicted clinical onset. CSF NfL appears to be a more sensitive measure than plasma NfL to monitor disease progression. This preHD cohort is one of the earliest yet studied, and our findings could be used to inform decisions about when to initiate a potential future intervention to delay or prevent further neurodegeneration while function is intact. FUNDING Wellcome Trust, CHDI Foundation.
Collapse
Affiliation(s)
- Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Paul Zeun
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katherine Osborne-Crowley
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Equity, Diversity and Inclusion, University of New South Wales, Sydney, NSW, Australia
| | - Eileanoir B Johnson
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher Parker
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Jessica Lowe
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Akshay Nair
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, UCL Queen Square Institute of Neurology, London, UK
| | - Claire O'Callaghan
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Christelle Langley
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Marina Papoutsi
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter McColgan
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kate Fayer
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henny Wellington
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Dementia Research Institute at University College London, London, UK
| | - Filipe B Rodrigues
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Amanda Heselgrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Dementia Research Institute at University College London, London, UK
| | - Harpreet Hyare
- Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, London, UK
| | - Cristina Sampaio
- CHDI Foundation, Princeton, NJ, USA; Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Dementia Research Institute at University College London, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- University College London Institute of Cognitive Neuroscience, University College London, London, UK
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Sahakian
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Douglas Langbehn
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Dementia Research Institute at University College London, London, UK.
| |
Collapse
|
14
|
Ye LQ, Li XY, Zhang YB, Cheng HR, Ma Y, Chen DF, Tao QQ, Li HL, Wu ZY. The discriminative capacity of CSF β-amyloid 42 and Tau in neurodegenerative diseases in the Chinese population. J Neurol Sci 2020; 412:116756. [PMID: 32142967 DOI: 10.1016/j.jns.2020.116756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In the past few years, the β-amyloid 42 peptide and tau protein in cerebrospinal fluid (CSF) have become primary diagnostic biomarkers in differentiating Alzheimer's disease (AD) and cognitive normal controls. As we know, several neurodegenerative diseases have been reported to overlap with AD in neuropathology and clinical symptoms. To examine the discriminative utility of these biomarkers in AD and other neurodegenerative diseases, we measured them in a cohort of Chinese population. METHODS We measured CSF Aβ42, t-tau and p-tau181 by ELISA tests and calculated the ratios of t-tau/Aβ42 and p-tau181/Aβ42 in 240 Chinese Han patients with AD (n = 82), frontotemporal dementia (FTD, n = 20), Huntington's disease (HD, n = 27), multiple system atrophy (MSA, n = 24), spinocerebellar ataxia type-3 (SCA3, n = 27), amyotrophic lateral sclerosis (ALS, n = 36) and controls (n = 24). RESULTS As expected, all biomarkers showed high discriminative capacity between AD and non-AD groups (p < .05) except for the elevated CSF t-tau in FTD (p > .05). Comparing with the controls, tau related biomarkers significantly elevated in the FTD (p < .001) and MSA (p < .05) groups. Surprisingly, comparing with controls, we found that CSF Aβ42 increased remarkably in the SCA3 (p < .05), HD and ALS groups (p < .001), achieving a high specificity, respectively. CONCLUSION To our best knowledge, this is the first comprehensive study in the Han Chinese population that confirmed the discriminative utility of CSF Aβ42 and tau biomarkers between AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Qi Ye
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yan Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Bin Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Rong Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Lei Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
15
|
Silajdžić E, Björkqvist M. A Critical Evaluation of Wet Biomarkers for Huntington's Disease: Current Status and Ways Forward. J Huntingtons Dis 2019; 7:109-135. [PMID: 29614689 PMCID: PMC6004896 DOI: 10.3233/jhd-170273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an unmet clinical need for objective biomarkers to monitor disease progression and treatment response in Huntington's disease (HD). The aim of this review is, therefore, to provide practical advice for biomarker discovery and to summarise studies on biofluid markers for HD. A PubMed search was performed to review literature with regard to candidate saliva, urine, blood and cerebrospinal fluid biomarkers for HD. Information has been organised into tables to allow a pragmatic approach to the discussion of the evidence and generation of practical recommendations for future studies. Many of the markers published converge on metabolic and inflammatory pathways, although changes in other analytes representing antioxidant and growth factor pathways have also been found. The most promising markers reflect neuronal and glial degeneration, particularly neurofilament light chain. International collaboration to standardise assays and study protocols, as well as to recruit sufficiently large cohorts, will facilitate future biomarker discovery and development.
Collapse
Affiliation(s)
- Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Björkqvist
- Department of Experimental Medical Science, Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
17
|
Lane RM, Smith A, Baumann T, Gleichmann M, Norris D, Bennett CF, Kordasiewicz H. Translating Antisense Technology into a Treatment for Huntington's Disease. Methods Mol Biol 2019; 1780:497-523. [PMID: 29856033 DOI: 10.1007/978-1-4939-7825-0_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington's disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.
Collapse
Affiliation(s)
| | - Anne Smith
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | - Dan Norris
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | |
Collapse
|
18
|
Niemelä V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J. Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington's disease. PLoS One 2018; 13:e0193492. [PMID: 29474427 PMCID: PMC5825143 DOI: 10.1371/journal.pone.0193492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a neurodegenerative disorder, but evidence also suggests neuroinflammation in the pathogenesis. The immune mechanisms involved and the timing of their activation need further clarification. METHODS A clinically well-characterized HD cohort and gene negative controls were enrolled. YKL-40 reflecting innate immunity and sCD27, a marker of adaptive immunity, were measured across disease stages. Comparisons were made with markers of neurodegeneration: neurofilament light (NFL), total-tau (T-tau), and phospho-tau (P-tau). RESULTS 52 cross-sectional cerebrospinal fluid samples and 23 follow-up samples were analyzed. sCD27 was elevated in manifest HD and premanifest gene expansion carriers, whereas controls mostly had undetectable levels. YKL-40 showed a trend toward increase in manifest HD. sCD27 correlated with YKL-40 which in turn was closely associated to all included markers of neurodegeneration. YKL-40, NFL, and both forms of tau could all independently predict HD symptoms, but only NFL levels differed between groups after age-adjustment. CONCLUSION Increased sCD27 in premanifest HD is a sign of T cell-mediated neuroinflammation. This finding is novel since other reports almost exclusively have found early involvement of innate immunity. Validation of sCD27 in a larger HD cohort is needed. The role of adaptive immunity in HD needs further clarification, as it may hasten disease progression.
Collapse
Affiliation(s)
- Valter Niemelä
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Joachim Burman
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jimmy Sundblom
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Abstract
Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
20
|
Weydt P, Dupuis L, Petersen Å. Thermoregulatory disorders in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:761-775. [PMID: 30459039 DOI: 10.1016/b978-0-444-64074-1.00047-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a paradigmatic autosomal-dominant adult-onset neurodegenerative disease. Since the identification of an abnormal expansion of a trinucleotide repeat tract in the huntingtin gene as the underlying genetic defect, a broad range of transgenic animal models of the disease has become available and these have helped to unravel the relevant molecular pathways in unprecedented detail. Of note, some of the most informative of these models develop thermoregulatory defects such as hypothermia, problems with adaptive thermogenesis, and an altered circadian temperature rhythm. Both central, e.g., in the hypothalamus and peripheral, i.e., the brown adipose tissue and skeletal muscle, problems contribute to the phenotype. Importantly, these structures and pathways are also affected in human HD. Yet, currently the evidence for bona fide thermodysregulation in human HD patients remains anecdotal. This may be due to a lack of reliable tools for monitoring body temperature in an outpatient setting. Regardless, study of the temperature phenotype has contributed to the identification of unexpected molecular targets, such as the PGC-1α pathway.
Collapse
Affiliation(s)
- Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.
| | - Luc Dupuis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Åsa Petersen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:99-113. [DOI: 10.1016/b978-0-12-804279-3.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Niemelä V, Landtblom AM, Blennow K, Sundblom J. Tau or neurofilament light-Which is the more suitable biomarker for Huntington's disease? PLoS One 2017; 12:e0172762. [PMID: 28241046 PMCID: PMC5328385 DOI: 10.1371/journal.pone.0172762] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Previous studies have suggested cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and total tau are elevated in Huntington's disease (HD) and may be used as markers of disease stage. Biomarkers are needed due to the slow disease progression and the limitations of clinical assessment. This study aims to validate the role of NFL and tau as biomarkers in HD. METHODS CSF was obtained from a cohort of HD patients and premanifest HD-mutation carriers. Unified Huntington's Disease Rating Scale (UHDRS) testing was performed on all subjects at the time of sampling. NFL and tau concentrations were determined by ELISA. Spearman correlations were calculated with R version 3.2.3. RESULTS 11 premanifest HD and 12 manifest HD subjects were enrolled. NFL and tau levels were correlated. NFL showed strong correlations with all items included in the clinical assessment (for example the total functional capacity (TFC) (r = - 0.70 p < 0.01) and total motor score (TMS) (r = 0.83p < 0.01). Tau showed slightly weaker correlations (eg. TMS (r = 0.67 p < 0.01); TFC (r = - 0.59 p < 0.01)). NFL was significantly correlated with 5-year probability of disease onset, whereas tau was not. CONCLUSION This study strengthens the case for NFL as a useful biomarker of disease stage. NFL was strongly correlated to all evaluated items in the UHDRS assessment. Tau also has a potential for use as a biomarker but correlations to clinical tests are weaker in this study. We suggest that NFL and possibly tau be used in clinical drug trials as biomarkers of disease progression that are potentially influenced by future disease-modifying therapies.
Collapse
Affiliation(s)
- Valter Niemelä
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Mölndal, Sweden
| | - Jimmy Sundblom
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Fernández‐Nogales M, Santos‐Galindo M, Hernández IH, Cabrera JR, Lucas JJ. Faulty splicing and cytoskeleton abnormalities in Huntington's disease. Brain Pathol 2016; 26:772-778. [PMID: 27529534 PMCID: PMC8028924 DOI: 10.1111/bpa.12430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG-repeat encoding a polyglutamine (polyQ) tract in the huntingtin protein. There is plenty of evidence of polyQ-driven toxicity. However, CAG repeat RNA-driven alteration of splicing has recently been proposed in analogy to CUG-repeat diseases. Here we review the reported alteration of the CAG-repeat associated splicing factor SRSF6 in brains of HD patients and mouse models and how this correlates with altered splicing of, at least, two microtubule-associated proteins in HD, namely MAPT (tau) and MAP2. Regarding tau, altered splicing of exon 10 has been reported, along with increased levels and 4R/3R-tau ratio and detection of tau in a new nuclear rod-shaped histopathological hallmark termed tau nuclear rod (TNR) or tau nuclear indentation (TNI). These findings, together with an attenuation of HD phenotype in R6/1 mice with tau deficiency and subsequent studies showing increased phosphorylation in mouse models and increased levels in CSF of patients, has led to proposing HD as a tauopathy. Regarding MAP2, an increase in its juvenile form and a decrease in total MAP2 together with redistribution from dendrites to soma is observed in HD patients, which may contribute to the dendritic atrophy in HD. Furthermore, MAP2 positive structures filling nuclear indentations have occasionally been found and co-localized with tau. Therefore, altered MAP function with imbalance in tau/MAP2 content could contribute to HD striatal atrophy and dysfunction. Besides, TNIs might be indicative of such MAP abnormalities. TNIs are also found in early pathology Alzheimer's disease and in tauopathy mice over-expressing mutant 4R-tau. This indicates that tau alteration is sufficient for TNI detection, which becomes a marker of increased total tau and/or altered 4R/3R-tau ratio and reporter of pathology-associated nuclear indentations. Altogether, these recent studies suggest that correcting the SRSF6-driven missplicing and/or microtubule-associated imbalance might be of therapeutic value in HD.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
- Present address:
Present address: Marta Fernández‐Nogales, CSIC/University of Miguel HernándezInstituto De Neurociencias De Alicante (INA)AlicanteSpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Ivó H. Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Jorge R. Cabrera
- Department of Microbiology and ImmunologyDartmouth CollegeLebanonNH
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| |
Collapse
|
24
|
Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, Zetterberg H, Wild EJ. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. J Neurochem 2016; 139:22-5. [PMID: 27344050 PMCID: PMC5053298 DOI: 10.1111/jnc.13719] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative condition with no therapeutic intervention known to alter disease progression, but several trials are ongoing and biomarkers of disease progression are needed. Tau is an axonal protein, often altered in neurodegeneration, and recent studies pointed out its role on HD neuropathology. Our goal was to study whether cerebrospinal fluid (CSF) tau is a biomarker of disease progression in HD. After informed consent, healthy controls, pre-symptomatic and symptomatic gene expansion carriers were recruited from two HD clinics. All participants underwent assessment with the Unified HD Rating Scale '99 (UHDRS). CSF was obtained according to a standardized lumbar puncture protocol. CSF tau was quantified using enzyme-linked immunosorbent assay. Comparisons between two groups were tested using ancova. Pearson's correlation coefficients were calculated for disease progression. Significance level was defined as p < 0.05. Seventy-six participants were included in this cross-sectional multicenter international pilot study. Age-adjusted CSF tau was significantly elevated in gene expansion carriers compared with healthy controls (p = 0.002). UHDRS total functional capacity was significantly correlated with CSF tau (r = -0.29, p = 0.004) after adjustment for age, and UHDRS total motor score was significantly correlated with CSF tau after adjustment for age (r = 0.32, p = 0.002). Several UHDRS cognitive tasks were also significantly correlated with CST total tau after age-adjustment. This study confirms that CSF tau concentrations in HD gene mutation carriers are increased compared with healthy controls and reports for the first time that CSF tau concentration is associated with phenotypic variability in HD. These conclusions strengthen the case for CSF tau as a biomarker in HD. In the era of novel targeted approaches to Huntington's disease, reliable biomarkers are needed. We quantified Tau protein, a marker of neuronal death, in cerebrospinal fluid and found it was increased in patients with Huntington's disease and predicted motor, cognitive, and functional disability in patients. It is therefore likely to be a biomarker of disease progression, and possibly of therapeutic response. Read the Editorial Highlight for this article on page 9.
Collapse
Affiliation(s)
| | - Lauren Byrne
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Peter McColgan
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Nicola Robertson
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
25
|
Vinther-Jensen T, Börnsen L, Budtz-Jørgensen E, Ammitzbøll C, Larsen IU, Hjermind LE, Sellebjerg F, Nielsen JE. Selected CSF biomarkers indicate no evidence of early neuroinflammation in Huntington disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e287. [PMID: 27734023 PMCID: PMC5042104 DOI: 10.1212/nxi.0000000000000287] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
Objective: To investigate CSF biomarkers of neuroinflammation and neurodegeneration in Huntington disease (HD) gene-expansion carriers compared to controls and to investigate these biomarkers in association with clinical HD rating scales and disease burden score. Methods: We collected CSF from 32 premanifest and 48 manifest HD gene-expansion carriers and 24 gene-expansion negative at-risk controls. We examined biomarkers of neuroinflammation (matrix metalloproteinase 9, C-X-C motif chemokine 13, terminal complement complex, chitinase-3-like-protein 1 [CHI3L1], and osteopontin [OPN]) and neurodegeneration (microtubule-associated protein tau, neurofilament light polypeptide [NFL], and myelin basic protein [MBP]). The study was approved by the Ethics Committee of the Capital Region of Denmark (H2-2011-085) and written informed consent was obtained from each participant before enrollment. Results: NFL was the only biomarker that increased in premanifest stages and no evidence of early involvement of neuroinflammation in HD was found. However, we found that the biomarkers for neurodegeneration, MBP and tau, increased during the disease course in manifest HD gene-expansion carriers and were associated with an increase of the neuroinflammation biomarkers CHI3L1 and OPN. Tau was also increased in all gene-expansion carriers with psychiatric symptoms compared to gene-expansion carriers without psychiatric symptoms. Conclusions: Neuroinflammation, which seems not to be an early event in our cohort, may be secondary to neurodegeneration in late HD. NFL is a possible disease burden correlate in HD, reflecting neuronal loss even before motor symptom onset, and may be useful as a dynamic biomarker in intervention studies.
Collapse
Affiliation(s)
- Tua Vinther-Jensen
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Lars Börnsen
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Cecilie Ammitzbøll
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Ida U Larsen
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Lena E Hjermind
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Finn Sellebjerg
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre (T.-V.J., I.U.L., L.E.H., J.E.N.), and Danish Multiple Sclerosis Center (L.B., C.A., F.S.), Department of Neurology, Rigshospitalet, Department of Cellular and Molecular Medicine, Section of Neurogenetics (T.-V.J., L.E.H., J.E.N.), Section of Biostatistics (E.B.-J.), and Department of Psychology (I.U.L.), University of Copenhagen, Denmark
| |
Collapse
|
26
|
Zerr I, Bähr M. Is there a role of Tau in Huntington′s disease? J Neurochem 2016; 139:9-10. [DOI: 10.1111/jnc.13762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Inga Zerr
- Department of Neurology; University Medicine Göttingen; Göttingen Germany
| | - Mathias Bähr
- Department of Neurology; University Medicine Göttingen; Göttingen Germany
| |
Collapse
|
27
|
Rosa E, Mahendram S, Ke YD, Ittner LM, Ginsberg SD, Fahnestock M. Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease. Neurobiol Aging 2016; 48:135-142. [PMID: 27676333 DOI: 10.1016/j.neurobiolaging.2016.08.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease, soluble tau accumulates and deposits as neurofibrillary tangles (NFTs). However, a precise toxic mechanism of tau is not well understood. We hypothesized that overexpression of wild-type tau downregulates brain-derived neurotrophic factor (BDNF), a neurotrophic peptide essential for learning and memory. Two transgenic mouse models of human tau expression and human tau (hTau40)-transfected human neuroblastoma (SH-SY5Y) cells were used to examine the effect of excess or pathologically modified wild-type human tau on BDNF expression. Both transgenic mouse models, with or without NFTs, as well as hTau40-SH-SY5Y cells significantly downregulated BDNF messenger RNA compared with controls. Similarly, transgenic mice overexpressing amyloid-β (Aβ) significantly downregulated BDNF expression. However, when crossed with tau knockout mice, the resulting animals exhibited BDNF levels that were not statistically different from wild-type mice. These results demonstrate that excess or pathologically modified wild-type human tau downregulates BDNF and that neither a mutation in tau nor the presence of NFTs is required for toxicity. Moreover, our findings suggest that tau at least partially mediates Aβ-induced BDNF downregulation. Therefore, Alzheimer's disease treatments targeting Aβ alone may not be effective without considering the impact of tau pathology on neurotrophic pathways.
Collapse
Affiliation(s)
- Elyse Rosa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sujeivan Mahendram
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Yazi D Ke
- Dementia Research Unit, The University of New South Wales, Sydney, Australia
| | - Lars M Ittner
- Dementia Research Unit, The University of New South Wales, Sydney, Australia
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, Orangeburg, NY, USA; Department of Neuroscience and Physiology, New York University Langone Medical Center, Orangeburg, NY, USA
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Byrne LM, Wild EJ. Cerebrospinal Fluid Biomarkers for Huntington’s Disease. J Huntingtons Dis 2016; 5:1-13. [DOI: 10.3233/jhd-160196] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Gratuze M, Cisbani G, Cicchetti F, Planel E. Is Huntington's disease a tauopathy? Brain 2016; 139:1014-25. [DOI: 10.1093/brain/aww021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
|
30
|
Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 2015; 14:715-24. [PMID: 26053162 PMCID: PMC4568959 DOI: 10.1111/acel.12359] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.
Collapse
Affiliation(s)
- Jennifer M. Deger
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Julia E. Gerson
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| |
Collapse
|
31
|
Gratuze M, Noël A, Julien C, Cisbani G, Milot-Rousseau P, Morin F, Dickler M, Goupil C, Bezeau F, Poitras I, Bissonnette S, Whittington RA, Hébert SS, Cicchetti F, Parker JA, Samadi P, Planel E. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease. Hum Mol Genet 2014; 24:86-99. [DOI: 10.1093/hmg/ddu456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
32
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Abstract
Huntington's disease (HD) is a devastating autosomal-dominant neurodegenerative condition caused by a CAG repeat expansion in the gene encoding huntingtin which is characterised by progressive motor impairment, cognitive decline and neuropsychiatric disturbances. There are currently no disease-modifying treatments available to patients, but a number of therapeutic strategies are currently being investigated, chief among them are nucleotide-based 'gene silencing' approaches, modulation of huntingtin post-translation modification and enhancing clearance of the mutant protein. In 2008, the authors' review highlighted the need to develop and validate biomarkers and provided a systematic head-to-head comparison of such measures. They searched the PubMed database for publications, which covered each of the subheadings mentioned below. They identified from these list studies which had relevance to biomarker development, as defined in their previous review. Building on a tradition of collaborative research in HD, great advances have been made in the field since that time and a range of outcome measures are now being recommended in order to assess efficacy in future therapeutic trials.
Collapse
Affiliation(s)
- Rachael I Scahill
- UCL Institute of Neurology, TRACK-HD, Department of Neurodegenerative Disease , Queen Square, London WC1N 3BG , UK
| | | | | |
Collapse
|