1
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
2
|
Domingo A, Yadav R, Ozelius LJ. Isolated dystonia: clinical and genetic updates. J Neural Transm (Vienna) 2020; 128:405-416. [PMID: 33247415 DOI: 10.1007/s00702-020-02268-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Four genes associated with isolated dystonia are currently well replicated and validated. DYT-THAP1 manifests as young-onset generalized dystonia with predominant craniocervical symptoms; and is associated with mostly deleterious missense variation in the THAP1 gene. De novo and inherited missense and protein truncating variation in GNAL as well as primarily missense variation in ANO3 cause isolated focal and/or segmental dystonia with preference for the upper half of the body and older ages at onset. The GAG deletion in TOR1A is associated with generalized dystonia with onset in childhood in the lower limbs. Rare variation in these genes causes monogenic sporadic and inherited forms of isolated dystonia; common variation may confer risk and imply that dystonia is a polygenic trait in a subset of cases. Although candidate gene screens have been successful in the past in detecting gene-disease associations, recent application of whole-genome and whole-exome sequencing methods enable unbiased capture of all genetic variation that may explain the phenotype. However, careful variant-level evaluation is necessary in every case, even in genes that have previously been associated with disease. We review the genetic architecture and phenotype of DYT-THAP1, DYT-GNAL, DYT-ANO3, and DYT-TOR1A by collecting case reports from the literature and performing variant classification using pathogenicity criteria.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA. .,Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Giri S, Ghosh A, Roy S, Sankhla CS, Das SK, Ray K, Ray J. Association of TOR1A and GCH1 Polymorphisms with Isolated Dystonia in India. J Mol Neurosci 2020; 71:325-337. [PMID: 32662044 DOI: 10.1007/s12031-020-01653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Isolated dystonia is a common movement disorder often caused by genetic mutations, although it is predominantly sporadic in nature. Common variants of dystonia-related genes were reported to be risk factors for idiopathic isolated dystonia. In this study, we aimed to analyse the roles of previously reported GTP cyclohydrolase (GCH1) and Torsin family 1 member A (TOR1A) polymorphisms in an Indian isolated dystonia case-control group. A total of 292 sporadic isolated dystonia patients and 316 control individuals were genotyped for single-nucleotide polymorphisms (SNPs) of GCH1 (rs3759664:G > A, rs12147422:A > G and rs10483639:C > G) and TOR1A (rs13300897:G > A, rs1801968:G > C, rs1182:G > T and rs3842225:G > Δ) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and confirmed by direct Sanger sequencing. The statistical significance of allelic, genotypic and haplotypic associations of all of the SNPs were evaluated using the two-tailed Fisher exact test. The minor allele (A) of rs3759664 is significantly associated with isolated limb dystonia as a risk factor (p = 0.005). The minor allele (C) of rs1801968 is strongly associated with isolated dystonia (p < 0.0001) and most of its subtypes. The major allele of rs3842225 (G) may act as a significant risk factor for Writer's cramp (p = 0.03). Four different haplogroups comprising of either rs1182 or rs3842225 or in combination with rs1801968 and rs13300897 were found to be significantly associated with isolated dystonia. No other allelic, genotypic or haplotypic association was found to be significant with isolated dystonia cohort or its endophenotype stratified groups. Our study suggests that TOR1A common variants have a significant role in isolated dystonia pathogenesis in the Indian population, whereas SNPs in the GCH1 gene may have a limited role.
Collapse
Affiliation(s)
- Subhajit Giri
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arunibha Ghosh
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | | | | | - Kunal Ray
- ATGC Diagnostics Private Limited, Kolkata, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|
4
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
5
|
Siokas V, Kardaras D, Aloizou AM, Asproudis I, Boboridis KG, Papageorgiou E, Hadjigeorgiou GM, Tsironi EE, Dardiotis E. BDNF rs6265 (Val66Met) Polymorphism as a Risk Factor for Blepharospasm. Neuromolecular Med 2018; 21:68-74. [DOI: 10.1007/s12017-018-8519-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
6
|
Field synopsis and systematic meta-analyses of genetic association studies in isolated dystonia. Parkinsonism Relat Disord 2018; 57:50-57. [DOI: 10.1016/j.parkreldis.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
|
7
|
Siokas V, Dardiotis E, Tsironi EE, Tsivgoulis G, Rikos D, Sokratous M, Koutsias S, Paterakis K, Deretzi G, Hadjigeorgiou GM. The Role of TOR1A Polymorphisms in Dystonia: A Systematic Review and Meta-Analysis. PLoS One 2017; 12:e0169934. [PMID: 28081261 PMCID: PMC5231385 DOI: 10.1371/journal.pone.0169934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 01/28/2023] Open
Abstract
Importance A number of genetic loci were found to be associated with dystonia. Quite a few studies have been contacted to examine possible contribution of TOR1A variants to the risk of dystonia, but their results remain conflicting. The aim of the present study was to systematically evaluate the effect of TOR1A gene SNPs on dystonia and its phenotypic subtypes regarding the body distribution. Methods We performed a systematic review of Pubmed database to identify all available studies that reported genotype frequencies of TOR1A SNPs in dystonia. In total 16 studies were included in the quantitative analysis. Odds ratios (ORs) were calculated in each study to estimate the influence of TOR1A SNPs genotypes on the risk of dystonia. The fixed-effects model and the random effects model, in case of high heterogeneity, for recessive and dominant mode of inheritance as well as the free generalized odds ratio (ORG) model were used to calculate both the pooled point estimate in each study and the overall estimates. Results Rs1182 was found to be associated with focal dystonia in recessive mode of inheritance [Odds Ratio, OR (95% confidence interval, C.I.): 1.83 (1.14–2.93), Pz = 0.01]. In addition, rs1801968 was associated with writer’s cramp in both recessive and dominant modes [OR (95%C.I.): 5.99 (2.08–17.21), Pz = 0.00009] and [2.48 (1.36–4.51), Pz = 0.003) respectively and in model free-approach [ORG (95%C.I.): 2.58 (1.45–4.58)]. Conclusions Our meta-analysis revealed a significant implication of rs1182 and rs1801968 TOR1A variants in the development of focal dystonia and writer’s cramp respectively. TOR1A gene variants seem to be implicated in dystonia phenotype.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Evangelia E. Tsironi
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stylianos Koutsias
- Department of Vascular Surgery, University Hospital of Larissa, University of Thessalia Medical School, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- * E-mail:
| |
Collapse
|
8
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
9
|
Chen CM, Chen YC, Chiang MC, Fung HC, Chang KH, Lee-Chen GJ, Wu YR. Association of GCH1 and MIR4697 , but not SIPA1L2 and VPS13C polymorphisms, with Parkinson's disease in Taiwan. Neurobiol Aging 2016; 39:221.e1-5. [DOI: 10.1016/j.neurobiolaging.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023]
|
10
|
Lack of association between TOR1A and THAP1 mutations and sporadic adult-onset primary focal dystonia in a Chinese population. Clin Neurol Neurosurg 2016; 142:26-30. [PMID: 26803725 DOI: 10.1016/j.clineuro.2016.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE TOR1A (torsin family 1, member A) and THAP1 (THAP domain containing, apoptosis associated protein 1) are two candidate genes that have been reported to be linked to adult-onset primary dystonia. However, the overall results have been inconsistent, likely because primary dystonia may have subtype-specific genetic risk factors. The aim of our study was to assess the association of TOR1A and THAP1 with adult-onset primary focal dystonia (AOPFD), the most common subtype of primary dystonia. METHODS A total of 248 subjects, comprising 117 AOPFD patients and 131 healthy controls, were included in our study. All coding exons of TOR1A and THAP1 were initially analyzed in the 117 patients. Subsequently, we investigated the association of two common TOR1A variants (rs2296793, rs1801968) with AOPFD in a Chinese population (117 patients versus 131 controls) and performed a pooled analysis by combining our data with previously published data. RESULTS No mutation of TOR1A and THAP1 was found other than two TOR1A variants (rs2296793, rs1801968), which have been previously reported in AOPFD patients. There were no statistically significant differences in the minor allele frequency (MAF) and genotype frequency between AOPFD and controls in our Chinese population (P>0.05). This result was confirmed by pooled analysis of multi-ethnic groups. CONCLUSION Our study suggested that there might not be an association between TOR1A or THAP1 and patients with AOPFD.
Collapse
|
11
|
Zhou Q, Chen Y, Yang J, Cao B, Wei Q, Ou R, Song W, Zhao B, Wu Y, Shang H. Association analysis of TOR1A polymorphisms rs2296793 and rs3842225 in a Chinese population with cervical dystonia. Neurosci Lett 2015; 612:185-188. [PMID: 26704435 DOI: 10.1016/j.neulet.2015.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND TOR1A (torsinA, DYT1) is the leading cause of early-onset generalized dystonia, however, the associations between common TOR1A single nucleotide polymorphisms (SNPs) and primary adult-onset focal dystonia are controversial. METHODS In a cohort of 201 focal cervical dystonia (CD) patients, we genotyped rs2296793 and rs3842225 SNPs in TOR1A using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. We also included 289 unrelated, age- and sex-matched healthy controls (HCs) from the same region. RESULT No significant differences were found in either the genotype distributions or minor allele frequencies (MAFs) of rs2296793 and rs3842225 between CD patients and HCs. There were no significant differences between early-onset and late-onset CD patients, between patients with and without a positive family history of dystonia, or between patients with and without tremor or sensory tricks. CONCLUSION Our study suggests that the common rs2296793 and rs3842225 SNPs of TOR1A do not play a major role in CD in a Chinese population.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Sako W, Murakami N, Izumi Y, Kaji R. Val66Met polymorphism of brain-derived neurotrophic factor is associated with idiopathic dystonia. J Clin Neurosci 2014; 22:575-7. [PMID: 25523127 DOI: 10.1016/j.jocn.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
The Val66Met (G196A; rs6265) single nucleotide polymorphism of brain-derived neurotrophic factor (BDNF) affects morphology and neuronal activity, and is expected to be associated with central nervous system disorders. However, it remains controversial whether Val66Met polymorphism is a risk factor for idiopathic dystonia. We aimed to clarify the impact of BDNF polymorphism on idiopathic dystonia. A literature search of PubMed was carried out. A random-effects model was employed for the meta-analysis. A pooled odds ratio (OR) was calculated along with 95% confidence intervals (CI) to reflect the risk of idiopathic dystonia in each genotype (GG, AG, AA) or minor allele. The proportion of variation due to heterogeneity was computed and expressed as I(2). Five case-control studies, comprising a total sample size of 1804 subjects (784 idiopathic dystonia patients, 1020 normal controls), were included in this meta-analysis. AA genotype was significantly more frequent in patients with idiopathic dystonia (OR=1.47, 95% CI 1.09-1.99, p=0.01, four studies, n=1716). This finding was derived from homogeneous studies (p=0.97, I(2)=0%). Our meta-analysis has revealed a significant overall effect of the AA genotype on the development of idiopathic dystonia.
Collapse
Affiliation(s)
- Wataru Sako
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | - Nagahisa Murakami
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
| |
Collapse
|
13
|
Risk factors for idiopathic dystonia in Queensland, Australia. J Clin Neurosci 2014; 21:2145-9. [DOI: 10.1016/j.jocn.2014.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 11/18/2022]
|
14
|
Newman JRB, Todorovic M, Silburn PA, Sutherland GT, Mellick GD. Lack of reproducibility in re-evaluating associations between GCH1 polymorphisms and Parkinson's disease and isolated dystonia in an Australian case--control group. Parkinsonism Relat Disord 2014; 20:668-70. [PMID: 24674769 DOI: 10.1016/j.parkreldis.2014.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/17/2014] [Accepted: 02/16/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Jeremy R B Newman
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.
| | - Michael Todorovic
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Peter A Silburn
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Greg T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - George D Mellick
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia; Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
15
|
Lohmann K, Klein C. Genetics of dystonia: what's known? What's new? What's next? Mov Disord 2014; 28:899-905. [PMID: 23893446 DOI: 10.1002/mds.25536] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/09/2013] [Accepted: 05/06/2013] [Indexed: 11/12/2022] Open
Abstract
Although all forms of dystonia share the core clinical features of involuntary dystonic dyskinesia, there is not only marked phenotypic but also etiologic heterogeneity. Isolated dystonia can be caused by mutations in TOR1A (DYT1), TUBB4 (DYT4), THAP1 (DYT6), CIZ1 (DYT23), ANO3 (DYT24), and GNAL (DYT25). Combined dystonias (with parkinsonism or myoclonus) are further subdivided into persistent (TAF1 [DYT3], GCHI [DYT5], SGCE [DYT11], ATP1A3 [DYT12]), PRKRA (DYT16), and paroxysmal (MR-1 [DYT8], PRRT2 [DYT10], SLC2A1 [DYT18]. With the advent of next-generation sequencing, an unprecedented number of new dystonia genes have recently been described, including 4 in the past 12 months. Despite the need for independent confirmation, these recent findings raise 2 important questions regarding (1) the role of genetics in dystonia overall and (2) the role of different molecular mechanisms in dystonia pathogenesis. The genetic contribution to dystonia represents a continuum ranging from genetic susceptibility factors of small effect to causative genes with markedly reduced penetrance to those with full penetrance. Equally diverse and complex are the pathways and neuronal function(s) putatively involved in dystonia pathogenesis including dopamine signaling, intracellular transport, cytoskeletal dynamics, transcriptional regulation, cell-cycle control, ion channel function, energy metabolism, signal transduction, and detoxification mechanisms. In the next decade of dystonia research, we expect to see the discovery of additional dystonia genes and susceptibility factors. In this context, it will be of great interest to explore whether the diverse cellular functions of the known dystonia proteins may be linked to shared pathways and thus complete the complex puzzle of dystonia pathogenesis. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | | |
Collapse
|
16
|
Abstract
Dystonia is a common movement disorder seen by neurologists in clinic. Genetic forms of the disease are important to recognize clinically and also provide valuable information about possible pathogenic mechanisms within the wider disorder. In the past few years, with the advent of new sequencing technologies, there has been a step change in the pace of discovery in the field of dystonia genetics. In just over a year, four new genes have been shown to cause primary dystonia (CIZ1, ANO3, TUBB4A and GNAL), PRRT2 has been identified as the cause of paroxysmal kinesigenic dystonia and other genes, such as SLC30A10 and ATP1A3, have been linked to more complicated forms of dystonia or new phenotypes. In this review, we provide an overview of the current state of knowledge regarding genetic forms of dystonia—related to both new and well-known genes alike—and incorporating genetic, clinical and molecular information. We discuss the mechanistic insights provided by the study of the genetic causes of dystonia and provide a helpful clinical algorithm to aid clinicians in correctly predicting the genetic basis of various forms of dystonia.
Collapse
Affiliation(s)
- Gavin Charlesworth
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | |
Collapse
|
17
|
Newman JRB, Lehn AC, Boyle RS, Silburn PA, Mellick GD. Screening for rare sequence variants in the THAP1 gene in a primary dystonia cohort. Mov Disord 2013; 28:1752-3. [PMID: 23649788 DOI: 10.1002/mds.25479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/03/2013] [Accepted: 03/20/2013] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jeremy R B Newman
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia
| | | | | | | | | |
Collapse
|