1
|
Di Micco V, Affronte L, Khinchi MS, Rønde G, Miranda MJ, Hammer TB, Specchio N, Beniczky S, Olofsson K, Møller RS, Gardella E. Seizure and movement disorder in CACNA1E developmental and epileptic encephalopathy: Two sides of the same coin or same side of two different coins? Epileptic Disord 2024; 26:520-526. [PMID: 38780451 DOI: 10.1002/epd2.20242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic variants in CACNA1E are associated with early-onset epileptic and developmental encephalopathy (DEE). Severe to profound global developmental delay, early-onset refractory seizures, severe hypotonia, and macrocephaly are the main clinical features. Patients harboring the recurrent CACNA1E variant p.(Gly352Arg) typically present with the combination of early-onset DEE, dystonia/dyskinesia, and contractures. We describe a 2-year-and-11-month-old girl carrying the p.(Gly352Arg) CACNA1E variant. She has a severe DEE with very frequent drug-resistant seizures, profound hypotonia, and episodes of dystonia and dyskinesia. Long-term video-EEG-monitoring documented subsequent tonic asymmetric seizures during wakefulness and mild paroxysmal dyskinesias of the trunk out of sleep which were thought to be a movement disorder and instead turned out to be focal hyperkinetic seizures. This is the first documented description of the EEG findings in this disorder. Our report highlights a possible overlap between cortical and subcortical phenomena in CACNA1E-DEE. We also underline how a careful electro-clinical evaluation might be necessary for a correct discernment between the two disorders, playing a fundamental role in the clinical assessment and proper management of children with CACNA1E-DEE.
Collapse
Affiliation(s)
- Valentina Di Micco
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
- Epilepsy and Movement Disorders, Neurology Unit, Bambino Gesù Children's Hospital, Rome, Italy
- Member of the European Reference Network EpiCARE
| | - Leonardo Affronte
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Child Neuropsychiatry, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Gitte Rønde
- Department of Pediatrics, Herlev and Gentofte University Hospital, Copenhagen University, Copenhagen, Denmark
| | - Maria Jose Miranda
- Department of Pediatrics, Herlev and Gentofte University Hospital, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Nicola Specchio
- Epilepsy and Movement Disorders, Neurology Unit, Bambino Gesù Children's Hospital, Rome, Italy
- Member of the European Reference Network EpiCARE
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
- Member of the European Reference Network EpiCARE
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kern Olofsson
- Department of Child Neurology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Rikke S Møller
- Member of the European Reference Network EpiCARE
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Clinical Genetics and Precision Treatment, Danish Epilepsy Centre, Dianalund, Denmark
| | - Elena Gardella
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
- Member of the European Reference Network EpiCARE
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Clinical Genetics and Precision Treatment, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Li H, Chen J, Zhou P, Meng Q. Analysis of characteristics of movement disorders in patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol 2024; 15:1357697. [PMID: 38497042 PMCID: PMC10941647 DOI: 10.3389/fneur.2024.1357697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Movement disorders (MDs) are common in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis but are poorly studied. This study aimed to investigate the clinical characteristics of MDs and the clinical differences between patients with and without MDs in anti-NMDAR encephalitis. Methods A retrospective study was conducted on patients with anti-NMDAR encephalitis who were first diagnosed and treated in the First People's Hospital of Yunnan Province from January 2017 to September 2022. According to the presence or absence of MDs, all patients were divided into two groups, and the clinical manifestations, auxiliary examinations, and prognosis of the two groups were compared. Patients in the MDs group were further subgrouped by different ages (<12 years, 12-17 years, and ≥ 18 years) and genders, and the prevalence of each MD was compared in different age and gender groups. Results (1) In our study there were 64 patients, of whom 76.6% (49/64) presented with MDs; the median age of onset in patients with MDs was 21 (15,35) years and 65.3% (32/49) were female. The three most common MDs were orofacial dyskinesia (OFLD) (67.3%), dystonia (55.1%), and stereotypies (34.7%). Patients <12 years were more likely to experience chorea than patients in other age groups (p = 0.003). (2) Compared with the non-MDs group, patients in the MDs group showed higher rates of prodromal manifestations, autonomic dysfunction, consciousness disorders, as well as pulmonary infection and gastrointestinal dysfunction (all p < 0.05). Peripheral blood neutrophil to lymphocyte ratio (NLR) (p = 0.014), the proportion of cerebrospinal fluid (CSF) NMDAR antibody titers ≥1:32 (p = 0.047), ICU admission rate (p = 0.04), length of stay (p = 0.007), maximum mRS score in the course of disease (p = 0.001) and mRS score at discharge (p = 0.006) in the MDs group were significantly higher than the non-MDs group. Conclusion MDs associated with anti-NMDAR encephalitis were predominantly hyperkinetic. Chorea occurred more commonly in patients aged <12 years. Patients with MDs were prone to autonomic dysfunction, consciousness disorders, pulmonary infection, and gastrointestinal dysfunction; they had more intense inflammation, more severe disease, and a poorer short-term prognosis.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jiajie Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pinyi Zhou
- Department of Sleep Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Gu Y, Mei D, Wang X, Ma A, Kong J, Zhang Y. Clinical and genetic analysis of benign familial infantile epilepsy caused by PRRT2 gene variant. Front Neurol 2023; 14:1135044. [PMID: 37228410 PMCID: PMC10204721 DOI: 10.3389/fneur.2023.1135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Objective This study presents the clinical phenotypes and genetic analysis of seven patients with benign familial infantile epilepsy (BFIE) diagnosed by whole-exome sequencing. Methods The clinical data of seven children with BFIE diagnosed at the Department of Neurology, Children's Hospital Affiliated to Zhengzhou University between December 2017 and April 2022 were retrospectively analyzed. Whole-exome sequencing was used to identify the genetic causes, and the variants were verified by Sanger sequencing in other family members. Results The seven patients with BFIE included two males and five females ranging in age between 3 and 7 months old. The main clinical phenotype of the seven affected children was the presence of focal or generalized tonic-clonic seizures, which was well controlled by anti-seizure medication. Cases 1 and 5 exhibited predominantly generalized tonic-clonic seizures accompanied by focal seizures while cases 2, 3, and 7 displayed generalized tonic-clonic seizures, and cases 4 and 6 had focal seizures. The grandmother and father of cases 2, 6, and 7 had histories of seizures. However, there was no family history of seizures in the remaining cases. Case 1 carried a de novo frameshift variant c.397delG (p.E133Nfs*43) in the proline-rich transmembrane protein 2 (PRRT2) gene while case 2 had a nonsense variant c.46G > T (p.Glu16*) inherited from the father, and cases 3-7 carried a heterozygous frameshift variant c.649dup (p.R217Pfs*8) in the same gene. In cases 3 and 4, the frameshift variant was de novo, while in cases 5-7, the variant was paternally inherited. The c.397delG (p.E133Nfs*43) variant is previously unreported. Conclusion This study demonstrated the effectiveness of whole-exome sequencing in the diagnosis of BFIE. Moreover, our findings revealed a novel pathogenic variant c.397delG (p.E133Nfs*43) in the PRRT2 gene that causes BFIE, expanding the mutation spectrum of PRRT2.
Collapse
Affiliation(s)
- Yu Gu
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ang Ma
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jinghui Kong
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Hang H, Lin L, Li D, Li J, Shi J, Lu J. Association between clinical factors and orofacial dyskinesias in anti-N-methyl-D-aspartate receptor encephalitis. Brain Behav 2022; 12:e2638. [PMID: 35620876 PMCID: PMC9304820 DOI: 10.1002/brb3.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND PURPOSE We aimed to determine whether demographic information, clinical characteristics, laboratory tests, and imaging features are associated with orofacial dyskinesias (OFLD) in patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. METHODS In this retrospective study, patients who were diagnosed with anti-NMDAR encephalitis were enrolled. All patients' factors, including demographic information, clinical characteristics, laboratory tests, and imaging features, were obtained at the time of hospitalization. The neurological function was assessed using the modified Rankin scale (mRS). Univariate and multivariate logistic regressions were used to examine the associations between clinical factors and OFLD. RESULTS In total, 119 patients (median age: 28.0 [19.0-41.0] years; 67 females) were recruited. Of 119 patients, 44 (37.0%) had OFLD. OFLD was associated with increased mRS at admission, serum sodium, lumbar puncture pressure, female biologic sex, fever, psychiatric symptoms, seizures, impaired consciousness, autonomic dysfunction, and central hypoventilation in univariate logistic regression, respectively. Multivariate regression analysis revealed that female biologic sex (odds ratios [OR], 4.73; 95% confidence interval [CI], 1.27-17.64; p = .021), increased mRS at admission (OR, 2.09; 95% CI, 1.18-3.71; p = .011), psychiatric symptoms (OR, 7.27; 95% CI, 1.20-43.91; p = .031), and seizures (OR, 5.11; 95% CI, 1.22-21.43; p = .026) were associated with OFLD, after adjusting for confounding factors. CONCLUSIONS Our analysis suggests that the following clinical factors are associated with OFLD: female biologic sex, increased mRS at admission, psychiatric symptoms, and seizures.
Collapse
Affiliation(s)
- Hailun Hang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liuyu Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Danhui Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Liu M, Sun X, Lin L, Luo X, Wang S, Wang C, Zhang Y, Xu Q, Xu W, Wu S, Lan X, Chen Y. Clinical characteristics and genetics of ten Chinese children with PRRT2-associated neurological diseases. Front Pediatr 2022; 10:997088. [PMID: 36467477 PMCID: PMC9712732 DOI: 10.3389/fped.2022.997088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proline-rich transmembrane protein 2 (PRRT2) plays an important role in the central nervous system and mutations in the gene are implicated in a variety of neurological disorders. This study aimed to summarize the clinical characteristics and gene expression analysis of neurological diseases related to the PRRT2 gene and explore the clinical characteristics, therapeutic effects, and possible pathogenic mechanisms of related diseases. METHODS We enrolled 10 children with PRRT2 mutation-related neurological diseases who visited the Children's Hospital affiliated with the Shanghai Jiaotong University School of Medicine/Shanghai Children's Hospital between May 2017 and February 2022. Video electroencephalography (VEEG), cranial imaging, treatment regimens, gene results, and gene expression were analyzed. Genetic testing involved targeted sequencing or whole-exome genome sequencing (WES). We further analyzed the expression and mutation conservation of PRRT2 and synaptosome-associated protein 25 (SNAP25) in blood samples using quantitative polymerase chain reaction (qPCR) and predicted the protein structure. Summary analysis of the reported gene maps and domains was also performed. RESULTS Ten children with PRRT2 gene mutations were analyzed, and 4 mutations were identified, consisting of 2 new (c.518A > C, p.Glu173 Ala; c.879 + 112G > A, p.?) and two known (c. 649 dup, p. Arg217Profs * 8; c. 649 del, p. Arg217Glufs * 12) mutations. Among these mutations, one was de novo(P6), and three could not be determined because one parent refused genetic testing. The clinical phenotypes were paroxysmal kinesigenic dyskinesia (PKD), benign familial infantile epilepsy (BFIE), epilepsy, infantile spasms, and intellectual disability. The qPCR results showed that PRRT2 gene expression levels were significantly lower in children and parent carriers than the control group. The SNAP25 gene expression level of affected children was significantly lower (P ≤ 0.001) than that of the control group. The mutation sites reported in this study are highly conserved in different species. Among the various drugs used, oxcarbazepine and sodium valproate were the most effective. All 10 children had a good disease prognosis, and 8 were completely controlled with no recurrence, whereas 2 had less severe and fewer seizures. CONCLUSION Mutation of PRRT2 led to a significant decrease in its protein expression level and that of SNAP25, suggesting that the mutant protein may lead to the loss of its function and that of related proteins. This mutation site is highly conserved in most species, and there was no significant correlation between specific PRRT2 genotypes and clinical phenotypes. Asymptomatic carriers also have decreased gene expression levels, suggesting that more factors are involved.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoang Sun
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Longlong Lin
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Simei Wang
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunmei Wang
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Quanmei Xu
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wuhen Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoping Lan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yucai Chen
- Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Health Commission (NHC), Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| |
Collapse
|
6
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Binda F, Valente P, Marte A, Baldelli P, Benfenati F. Increased responsiveness at the cerebellar input stage in the PRRT2 knockout model of paroxysmal kinesigenic dyskinesia. Neurobiol Dis 2021; 152:105275. [PMID: 33515674 DOI: 10.1016/j.nbd.2021.105275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
PRoline-Rich Transmembrane protein-2 (PRRT2) is a recently described neuron-specific type-2 integral membrane protein with a large cytosolic N-terminal domain that distributes in presynaptic and axonal domains where it interacts with several presynaptic proteins and voltage-gated Na+ channels. Several PRRT2 mutations are the main cause of a wide and heterogeneous spectrum of paroxysmal disorders with a loss-of-function pathomechanism. The highest expression levels of PRRT2 in brain occurs in cerebellar granule cells (GCs) and cerebellar dysfunctions participate in the dyskinetic phenotype of PRRT2 knockout (KO) mice. We have investigated the effects of PRRT2 deficiency on the intrinsic excitability of GCs and the input-output relationships at the mossy fiber-GC synapses. We show that PRRT2 KO primary GCs display increased expression of Na+ channels, increased amplitude of Na+ currents and increased length of the axon initial segment, leading to an overall enhancement of intrinsic excitability. In acute PRRT2 KO cerebellar slices, GCs were more prone to action potential discharge in response to mossy fiber activation and exhibited an enhancement of transient and persistent Na+ currents, in the absence of changes at the mossy fiber-GC synapses. The results support a key role of PRRT2 expressed in GCs in the physiological regulation of the excitatory input to the cerebellum and are consistent with a major role of a cerebellar dysfunction in the pathogenesis of the PRRT2-linked paroxysmal pathologies.
Collapse
Affiliation(s)
- Francesca Binda
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
8
|
Freitas ME, Ruiz-Lopez M, Dalmau J, Erro R, Privitera M, Andrade D, Fasano A. Seizures and movement disorders: phenomenology, diagnostic challenges and therapeutic approaches. J Neurol Neurosurg Psychiatry 2019; 90:920-928. [PMID: 30796133 DOI: 10.1136/jnnp-2018-320039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Seizures and movement disorders (MDs) are distinct neurological conditions presenting with abnormal movements. Despite sharing an overlap in phenomenology, these movements have different origins. In order to explore the overlaps and the narrow boundaries between these two conditions, we performed a review of the literature to explore the risk of seizures in MDs. We discussed the mimics and chameleons including MDs that look like seizure (eg, paroxysmal dyskinesia, status dystonicus) and seizures that look like MDs (eg, epilepsia partialis continua, nocturnal frontal lobe epilepsy). Additionally, we examined the therapeutic challenges as well as the anatomical and chemical pathways relevant in the interplay between epilepsy and MDs. Finally, we proposed an algorithm to guide clinicians towards the final diagnosis of conditions characterised by the co-occurrence of MDs and seizures.
Collapse
Affiliation(s)
- Maria Eliza Freitas
- Medicine, McMaster University Division of Neurology, Hamilton, Ontario, Canada
| | - Marta Ruiz-Lopez
- Service of Neurology, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Josep Dalmau
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, UCL Institute of Neurology, Baronissi, Italy
| | - Michael Privitera
- Epilepsy Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio, USA
| | | | - Alfonso Fasano
- Neurology, Krembil Brain Institute; Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Movement disorders phenomenology in focal motor seizures. Parkinsonism Relat Disord 2019; 61:161-165. [DOI: 10.1016/j.parkreldis.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/30/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
|
10
|
Zhao G, Liu X, Zhang Q, Wang K. PRRT2 mutations in a cohort of Chinese families with paroxysmal kinesigenic dyskinesia and genotype-phenotype correlation reanalysis in literatures. Int J Neurosci 2018; 128:751-760. [PMID: 29285950 DOI: 10.1080/00207454.2017.1418345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE STUDY Though rare, children are susceptible to paroxysmal dyskinesias such as paroxysmal kinesigenic dyskinesia, and infantile convulsions and choreoathetosis. Recent studies showed that the cause of paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis could be proline-rich transmembrane protein 2 (PRRT2) gene mutations. MATERIAL AND METHODS This study analysed PRRT2 gene mutations in 51 families with paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis by direct sequencing. In particular, we characterize the genotype-phenotype correlation between age at onset and the types of PRRT2 mutations in all published cases. RESULTS Direct sequencing showed that 12 out of the 51 families had three different pathogenic mutations (c.649dupC, c.776dupG, c.649C>T) in the PRRT2 gene. No significant difference of age at onset between the patients with and without PRRT2 mutations was found in this cohort of patients. A total of 97 different PRRT2 mutations have been reported in 87 studies till now. The PRRT2 mutation classes are wide, and most mutations are frameshift mutations but the most common mutation remains c.649dupC. Comparisons of the age at onset in paroxysmal kinesigenic dyskinesia or infantile convulsions patients with different types of mutations showed no significant difference. CONCLUSIONS This study expands the clinical and genetic spectrums of Chinese patients with paroxysmal kinesigenic dyskinesia and infantile convulsions and choreoathetosis. No clear genotype-phenotype correlation between the age at onset and the types of mutations has been determined.
Collapse
Affiliation(s)
- Guohua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| | - Xiaomin Liu
- b Department of Neurology, Qianfoshan Hospital , Shandong University, Jinan, China
| | - Qiong Zhang
- c Department of Psychology and Behavioral Sciences , Zhejiang University, Hangzhou, China
| | - Kang Wang
- d Department of Neurology, First Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Miyagi T, Okuma M, Suwazono S, Kido M, Tashiro Y, Ishihara S, Nakachi R, Suehara M. [Clinical manifestations of 5 patients with idiopathic paroxysmal kinesigenic choreoathetosis]. Rinsho Shinkeigaku 2016; 56:165-73. [PMID: 26887836 DOI: 10.5692/clinicalneurol.cn-000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is a rare disorder characterized by recurrent and brief attacks of choreoathetoid and/or dystonic movements in trunk and limbs triggered by initiation of voluntary movement. Of 5 patients with idiopathic PKC in our hospital, four were men and one was with family history. Age of onset ranged from 8 to 15 years old. They were consistent with previous reports in the characteristics of involuntary movements, normal neurological findings, normal laboratory data, no abnormal findings of standard imaging studies, and good restraining effects on attacks with carbamazepine. Individual body parts where attacks often involved were different among 5 patients. Although previous reports which said the prognosis and outcome of PKC were good, neuropsychological examinations in our study revealed that 2 patients out of 5 had certain cortical dysfunction, one patient was with progressive deterioration, and the other was with underlying mild abnormalities. Detailed and serial neuropsychological examinations might be necessary for some PKC patients.
Collapse
Affiliation(s)
- Tetsuya Miyagi
- Department of Neurology, National Hospital Organization Okinawa Hospital
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Paroxysmal dyskinesias represent a group of episodic abnormal involuntary movements manifested by recurrent attacks of dystonia, chorea, athetosis, or a combination of these disorders. Paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, paroxysmal exertion-induced dyskinesia, and paroxysmal hypnogenic dyskinesia are distinguished clinically by precipitating factors, duration and frequency of attacks, and response to medication. Primary paroxysmal dyskinesias are usually autosomal dominant genetic conditions. Secondary paroxysmal dyskinesias can be the symptoms of different neurologic and medical disorders. This review summarizes the updates on etiology, pathophysiology, genetics, clinical presentation, differential diagnosis, and treatment of paroxysmal dyskinesias and other episodic movement disorders.
Collapse
Affiliation(s)
- Olga Waln
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston, TX 77030, USA
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, 6550 Fannin, Suite 1801, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Nobile C, Striano P. PRRT2: A major cause of infantile epilepsy and other paroxysmal disorders of childhood. PROGRESS IN BRAIN RESEARCH 2014; 213:141-58. [DOI: 10.1016/b978-0-444-63326-2.00008-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Yang X, Zhang Y, Xu X, Wang S, Yang Z, Wu Y, Liu X, Wu X. Phenotypes and PRRT2 mutations in Chinese families with benign familial infantile epilepsy and infantile convulsions with paroxysmal choreoathetosis. BMC Neurol 2013; 13:209. [PMID: 24370076 PMCID: PMC3897939 DOI: 10.1186/1471-2377-13-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in the PRRT2 gene have been identified as the major cause of benign familial infantile epilepsy (BFIE), paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with paroxysmal choreoathetosis/dyskinesias (ICCA). Here, we analyzed the phenotypes and PRRT2 mutations in Chinese families with BFIE and ICCA. Methods Clinical data were collected from 22 families with BFIE and eight families with ICCA. PRRT2 mutations were screened using PCR and direct sequencing. Results Ninety-five family members were clinically affected in the 22 BFIE families. During follow-up, two probands had one seizure induced by diarrhea at the age of two years. Thirty-one family members were affected in the eight ICCA families, including 11 individuals with benign infantile epilepsy, nine with PKD, and 11 with benign infantile epilepsy followed by PKD. Two individuals in one ICCA family had PKD or ICCA co-existing with migraine. One affected member in another ICCA family had experienced a fever-induced seizure at 7 years old. PRRT2 mutations were detected in 13 of the 22 BFIE families. The mutation c.649_650insC (p.R217PfsX8) was found in nine families. The mutations c.649delC (p.R217EfsX12) and c.904_905insG (p.D302GfsX39) were identified in three families and one family, respectively. PRRT2 mutations were identified in all eight ICCA families, including c.649_650insC (p.R217PfsX8), c.649delC (p.R217EfsX12), c.514_517delTCTG (p.S172RfsX3) and c.1023A > T (X341C). c.1023A > T is a novel mutation predicted to elongate the C-terminus of the protein by 28 residues. Conclusions Our data demonstrated that PRRT2 is the major causative gene of BFIE and ICCA in Chinese families. Site c.649 is a mutation hotspot: c.649_650insC is the most common mutation, and c.649delC is the second most common mutation in Chinese families with BFIE and ICCA. As far as we know, c.1023A > T is the first reported mutation in exon 4 of PRRT2. c.649delC was previously reported in PKD, ICCA and hemiplegic migraine families, but we further detected it in BFIE-only families. c.904_905insG was reported in an ICCA family, but we identified it in a BFIE family. c.514_517delTCTG was previously reported in a PKD family, but we identified it in an ICCA family. Migraine and febrile seizures plus could co-exist in ICCA families.
Collapse
Affiliation(s)
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No, 1 of Xian Men Street, , Beijing, Xicheng District 100034, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang K, Zhao X, Du Y, He F, Peng G, Luo B. Phenotypic overlap among paroxysmal dyskinesia subtypes: Lesson from a family with PRRT2 gene mutation. Brain Dev 2013; 35:664-6. [PMID: 22902309 DOI: 10.1016/j.braindev.2012.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/23/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022]
Abstract
Paroxysmal dyskinesia (PD) is a group of rare neurological conditions which was divided into paroxysmal kinesigenic dyskinesia (PKD), paroxysmal non-kinesigenic dyskinesia (PNKD) and paroxysmal exercise-induced dyskinesia (PED) according to their clinical features. PRRT2 gene was initially identified as the major gene responsible for PKD followed by presence of various PRRT2 mutations discovered in families with benign familial infantile convulsions (BFIC) and infantile convulsions and choreoathetosis (ICCA). We describe a family with characteristic PD showing overlaps in clinical pictures among the three PD subgroups, and a nonsense PRRT2 mutation c.649C>T (p.Arg217X) was also detected. This broadens the phenotypic spectrum in PRRT2-related disorders. In addition, an unusual exercise trigger observed in the proband, likely representing an underestimated occurrence, together with the current clinical PD classification is also elucidated.
Collapse
Affiliation(s)
- Kang Wang
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|
16
|
Méneret A, Gaudebout C, Riant F, Vidailhet M, Depienne C, Roze E. PRRT2mutations and paroxysmal disorders. Eur J Neurol 2013; 20:872-8. [DOI: 10.1111/ene.12104] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/17/2012] [Indexed: 11/30/2022]
|
17
|
Liu XR, Wu M, He N, Meng H, Wen L, Wang JL, Zhang MP, Li WB, Mao X, Qin JM, Li BM, Tang B, Deng YH, Shi YW, Su T, Yi YH, Tang BS, Liao WP. Novel PRRT2 mutations in paroxysmal dyskinesia patients with variant inheritance and phenotypes. GENES BRAIN AND BEHAVIOR 2012. [PMID: 23190448 DOI: 10.1111/gbb.12008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs-related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non-convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between ICCA/PKD and epilepsy.
Collapse
Affiliation(s)
- X-R Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Groffen AJA, Klapwijk T, van Rootselaar AF, Groen JL, Tijssen MAJ. Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol 2012; 260:93-9. [PMID: 22752065 PMCID: PMC3535363 DOI: 10.1007/s00415-012-6592-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/23/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Paroxysmal dyskinesia (PxD) is a group of movement disorders characterized by recurrent episodes of involuntary movements. Familial paroxysmal kinesigenic dyskinesia (PKD) is caused by PRRT2 mutations, but a distinct etiology has been suggested for sporadic PKD. Here we describe a cohort of patients collected from our movement disorders outpatient clinic in the period 1996–2011. Fifteen patients with sporadic PxD and 23 subjects from three pedigrees with familial PKD were screened for mutations in candidate genes. PRRT2 mutations co-segregated with PKD in two families and occurred in two sporadic cases of PKD. No mutations were detected in patients with non-kinesigenic or exertion-induced dyskinesia, and none in other candidate genes including PNKD1 (MR-1) and SLC2A1 (GLUT1). Thus, PRRT2 mutations also cause sporadic PKD as might be expected given the variable expressivity and reduced penetrance observed in familial PKD. Further genetic heterogeneity is suggested by the absence of candidate gene mutations in both sporadic and familial PKD suggesting a contribution of other genes or non-coding regions.
Collapse
Affiliation(s)
- Alexander J. A. Groffen
- Departments of Clinical Genetics and Functional Genomics, Center of Neurogenomics and Cognitive Research (CNCR), VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Thom Klapwijk
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Justus L. Groen
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina A. J. Tijssen
- Department of Neurology AB 51, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|