1
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Myers PS, O'Donnell JL, Jackson JJ, Lessov-Schlaggar CN, Miller RL, Foster ER, Cruchaga C, Benitez BA, Kotzbauer PT, Perlmutter JS, Campbell MC. Proteinopathy and Longitudinal Cognitive Decline in Parkinson Disease. Neurology 2022; 99:e66-e76. [PMID: 35418463 PMCID: PMC9259093 DOI: 10.1212/wnl.0000000000200344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES People with Parkinson disease (PD) commonly experience cognitive decline, which may relate to increased α-synuclein, tau, and β-amyloid accumulation. This study examines whether the different proteins predict longitudinal cognitive decline in PD. METHODS All participants (PD n = 152, controls n = 52) were part of a longitudinal study and completed a lumbar puncture for CSF protein analysis (α-synuclein, total tau [tau], and β-amyloid42 [β-amyloid]), a β-amyloid PET scan, and/or provided a blood sample for APOE genotype (ε4+, ε4-), which is a risk factor for β-amyloid accumulation. Participants also had comprehensive, longitudinal clinical assessments of overall cognitive function and dementia status, as well as cognitive testing of attention, language, memory, and visuospatial and executive function. We used hierarchical linear growth models to examine whether the different protein metrics predict cognitive change and multivariate Cox proportional hazard models to predict time to dementia conversion. Akaike information criterion was used to compare models for best fit. RESULTS Baseline measures of CSF β-amyloid predicted decline for memory (p = 0.04) and overall cognitive function (p = 0.01). APOE genotypes showed a significant group (ε4+, ε4-) effect such that ε4+ individuals declined faster than ε4- individuals in visuospatial function (p = 0.03). Baseline β-amyloid PET significantly predicted decline in all cognitive measures (all p ≤ 0.004). Neither baseline CSF α-synuclein nor tau predicted cognitive decline. All 3 β-amyloid--related metrics (CSF, PET, APOE) also predicted time to dementia. Models with β-amyloid PET as a predictor fit the data the best. DISCUSSION Presence or risk of β-amyloid accumulation consistently predicted cognitive decline and time to dementia in PD. This suggests that β-amyloid has high potential as a prognostic indicator and biomarker for cognitive changes in PD.
Collapse
Affiliation(s)
- Peter S Myers
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - John L O'Donnell
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Joshua J Jackson
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Christina N Lessov-Schlaggar
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Rebecca L Miller
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Erin R Foster
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Carlos Cruchaga
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Bruno A Benitez
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Paul T Kotzbauer
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Joel S Perlmutter
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Meghan C Campbell
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO.
| |
Collapse
|
3
|
Brain age and Alzheimer's-like atrophy are domain-specific predictors of cognitive impairment in Parkinson's disease. Neurobiol Aging 2021; 109:31-42. [PMID: 34649002 DOI: 10.1016/j.neurobiolaging.2021.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022]
Abstract
Recently, it was shown that patients with Parkinson's disease (PD) who exhibit an "Alzheimer's disease (AD)-like" pattern of brain atrophy are at greater risk for future cognitive decline. This study aimed to investigate whether this association is domain-specific and whether atrophy associated with brain aging also relates to cognitive impairment in PD. SPARE-AD, an MRI index capturing AD-like atrophy, and atrophy-based estimates of brain age were computed from longitudinal structural imaging data of 178 PD patients and 84 healthy subjects from the LANDSCAPE cohort. All patients underwent an extensive neuropsychological test battery. Patients diagnosed with mild cognitive impairment or dementia were found to have higher SPARE-AD scores as compared to patients with normal cognition and healthy controls. All patient groups showed increased brain age. SPARE-AD predicted impairment in memory, language and executive functions, whereas advanced brain age was associated with deficits in attention and working memory. Data suggest that SPARE-AD and brain age are differentially related to domain-specific cognitive decline in PD. The underlying pathomechanisms remain to be determined.
Collapse
|
4
|
Compta Y, Revesz T. Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. JOURNAL OF PARKINSONS DISEASE 2021; 11:107-121. [PMID: 33325398 PMCID: PMC7990431 DOI: 10.3233/jpd-202323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid-β peptide (Aβ) and tau lesions of the Alzheimer-type are common in PD and α-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of Aβ and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of α-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for α-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond α-synuclein, tau and Aβ might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain.,Institut de Neurociències, Maextu's excellence center, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
5
|
Becker S, Granert O, Timmers M, Pilotto A, Van Nueten L, Roeben B, Salvadore G, Galpern WR, Streffer J, Scheffler K, Maetzler W, Berg D, Liepelt-Scarfone I. Association of Hippocampal Subfields, CSF Biomarkers, and Cognition in Patients With Parkinson Disease Without Dementia. Neurology 2020; 96:e904-e915. [PMID: 33219138 DOI: 10.1212/wnl.0000000000011224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To examine whether hippocampal volume loss is primarily associated with cognitive status or pathologic β-amyloid 1-42 (Aβ42) levels, this study compared hippocampal subfield volumes between patients with Parkinson disease (PD) with mild cognitive impairment (PD-MCI) and without cognitive impairment (PD-CN) and between patients with low and high Aβ42 levels, in addition exploring the relationship among hippocampal subfield volumes, CSF biomarkers (Aβ42, phosphorylated and total tau), neuropsychological tests, and activities of daily living. METHODS Forty-five patients with PD without dementia underwent CSF analyses and MRI as well as comprehensive motor and neuropsychological examinations. Hippocampal segmentation was conducted using FreeSurfer image analysis suite 6.0. Regression models were used to compare hippocampal subfield volumes between groups, and partial correlations defined the association between variables while controlling for intracranial volume (ICV). RESULTS Linear regressions revealed cognitive group as a statistically significant predictor of both the hippocampal-amygdaloid transition area (HATA; β = -0.23, 95% CI -0.44 to -0.02) and the cornu ammonis 1 region (CA1; β = -0.28, 95% confidence interval [CI] -0.56 to -0.02), independent of disease duration and ICV, with patients with PD-MCI showing significantly smaller volumes than PD-CN. In contrast, no subfields were predicted by Aβ42 levels. Smaller hippocampal volumes were associated with worse performance on memory, language, spatial working memory, and executive functioning tests. The subiculum was negatively correlated with total tau levels (r = -0.37, 95% CI -0.60 to -0.09). CONCLUSION Cognitive status, but not CSF Aβ42, predicted hippocampal volumes, specifically the CA1 and HATA. Hippocampal subfields were associated with various cognitive domains, as well as with tau pathology.
Collapse
Affiliation(s)
- Sara Becker
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany.
| | - Oliver Granert
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Maarten Timmers
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Andrea Pilotto
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Luc Van Nueten
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Benjamin Roeben
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Giacomo Salvadore
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Wendy R Galpern
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Johannes Streffer
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Klaus Scheffler
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Walter Maetzler
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Daniela Berg
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Inga Liepelt-Scarfone
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| |
Collapse
|
6
|
Ye R, Touroutoglou A, Brickhouse M, Katz S, Growdon JH, Johnson KA, Dickerson BC, Gomperts SN. Topography of cortical thinning in the Lewy body diseases. NEUROIMAGE-CLINICAL 2020; 26:102196. [PMID: 32059167 PMCID: PMC7016450 DOI: 10.1016/j.nicl.2020.102196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
Abstract
Objective Regional cortical thinning in dementia with Lewy bodies (DLB) and Parkinson disease dementia (PDD) may underlie some aspect of their clinical impairments; cortical atrophy likely reflects extensive Lewy body pathology with alpha-synuclein deposits, as well as associated Alzheimer's disease co-pathologies, when present. Here we investigated the topographic distribution of cortical thinning in these Lewy body diseases compared to cognitively normal PD and healthy non-PD control subjects, explored the association of regional thinning with clinical features and evaluated the impact of amyloid deposition. Methods Twenty-one participants with dementia with Lewy bodies (DLB), 16 with Parkinson disease (PD) - associated cognitive impairment (PD-MCI and PDD), and 24 cognitively normal participants with PD underwent MRI, PiB PET, and clinical evaluation. Cortical thickness across the brain and in regions of interest (ROIs) was compared across diagnostic groups and across subgroups stratified by amyloid status, and was related to clinical and cognitive measures. Results DLB and PD-impaired groups shared a similar distribution of cortical thinning that included regions characteristic of AD, as well as the fusiform, precentral, and paracentral gyri. Elevated PiB retention in DLB and PD-impaired but not in PD-normal participants was associated with more extensive and severe cortical thinning, in an overlapping topography that selectively affected the medial temporal lobe in DLB participants. In DLB, greater thinning in AD signature and fusiform regions was associated with greater cognitive impairment. Conclusions The pattern of cortical thinning is similar in DLB and PD-associated cognitive impairment, overlapping with and extending beyond AD signature regions to involve fusiform, precentral, and paracentral regions. Cortical thinning in AD signature and fusiform regions in these diseases reflects cognitive impairment and is markedly accentuated by amyloid co-pathology. Further work will be required to determine whether the distinct topography of cortical thinning in DLB and PD-associated cognitive impairment might have value as a diagnostic and/ or outcome biomarker in clinical trials.
Collapse
Affiliation(s)
- Rong Ye
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael Brickhouse
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Samantha Katz
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - John H Growdon
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N Gomperts
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
7
|
Wang H, Zhu X, Shen J, Zhao EF, He D, Shen H, Liu H, Zhou Y. Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. BMC Genomics 2019; 20:725. [PMID: 31601169 PMCID: PMC6788010 DOI: 10.1186/s12864-019-6089-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The underlying physiological mechanisms associated with aging are still complex and unclear. As a very important tissue of human body, the circulatory system also plays a very important role in the process of aging. In this study, we use the isobaric tags for relative and absolute quantification (iTRAQ) method to identify differentially expressed proteins in plasma for humans and monkeys between young and aged. Western blotting and behavioral experiment in mice were performed to validate the expression of the candidate protein. RESULTS Between the young / the old humans and the young / the old monkeys 74 and 69 proteins were found to be differently expressed, respectively. For the human samples, these included 38 up-regulated proteins and 36 down-regulated proteins (a fold change ≥1.3 or ≤ 0.667, p value ≤0.05).For the monkey samples, 51 up-regulated proteins and 18 down-regulated proteins (a fold change ≥1.3 or ≤ 0.667, p value ≤0.05). KEGG pathway analysis revealed that phagosome, focal adhesion, ECM-receptor interaction and PI3K/AKT signaling pathway were the most common pathways involved in aging. We found only IGFBP4 protein that existed in up-regulated proteins in aged both for human and monkey. In addition, the differential expression of IGFBP4 was validated by western blot analysis and IGFBP4 treatment mimicked aging-related cognitive dysfunction in mice. CONCLUSIONS This first, the integrated proteomics for the plasma protein of human and monkey reveal one protein-IGFBP4, which was validated by western blotting and behavioral analysis can promote the process of aging. And, iTRAQ analysis showed that proteolytic systems, and inflammatory responses plays an important role in the process of aging. These findings provide a basis for better understanding of the underlying mechanisms involved in aging.
Collapse
Affiliation(s)
- Hao Wang
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Xiaoqi Zhu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Junyan Shen
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - En-Feng Zhao
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Dajun He
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Haitao Shen
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Hailiang Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
- College of Life Sciences, Key Laboratary of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yongxin Zhou
- Department of Thoracic-Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kozak VV. [Determining the risk of dementia in Parkinson's disease: possibilities and perspectives]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:137-143. [PMID: 31407694 DOI: 10.17116/jnevro2019119061137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dementia in Parkinson's disease (D-PD) worsens the course of PD, and it is associated with a decrease in the quality of life of patients and caregivers, as well as with elevated costs for patient care, and, as a consequence, leads to a significant cost increase in the health management. Early detection of the risk of dementia in patients with PD is one of the challenges of modern clinical neurology. Various methods for the detection of morphologic and functional changes associated with D-PD risk (prognostic biomarkers) were suggested. The aim of this article is a brief review of current achievements in the search for and evaluation of the effectiveness of such biomarkers. The review included the following methods: clinical examination, neuroimaging, examination of biological fluids, genetic analysis, neurophysiological methods and combined methods. Biomarkers of D-PD can contribute to optimization of the selection of pharmacological or non-pharmacological methods of preventing cognitive impairment at early stages of PD, and, therefore, to potential improvement of the overall clinical outcomes.
Collapse
Affiliation(s)
- V V Kozak
- University of Basel, Hospital of the University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Yoon EJ, Ismail Z, Hanganu A, Kibreab M, Hammer T, Cheetham J, Kathol I, Sarna JR, Martino D, Furtado S, Monchi O. Mild behavioral impairment is linked to worse cognition and brain atrophy in Parkinson disease. Neurology 2019; 93:e766-e777. [PMID: 31320470 DOI: 10.1212/wnl.0000000000007968] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To evaluate the associations of mild behavioral impairment (MBI) with cognitive deficits and patterns of gray matter changes in Parkinson disease (PD). METHODS Sixty patients with PD without dementia and 29 healthy controls underwent a cognitive neuropsychological evaluation and structural MRI scan. MBI was evaluated with the MBI Checklist (MBI-C), a rating scale designed to elicit emergent neuropsychiatric symptoms in accordance with MBI criteria. We divided the patients with PD into 2 groups: 1 group with high MBI-C scores (PD-MBI) and the other with low MBI-C scores (PD-noMBI). RESULTS Among 60 patients with PD, 20 were categorized as having PD-MBI (33.33%). In healthy controls, no participants met the MBI cut-point threshold. The PD-MBI group had significantly lower Montreal Cognitive Assessment and z scores in all 5 domains and the global score compared to healthy controls and those with PD-noMBI. In addition, all cognitive domains except language and global cognition negatively correlated with the MBI-C total score in all patients with PD. For cortical structures, the PD-MBI group revealed middle temporal cortex thinning and decreased volume compared with the PD-noMBI group, and decreased volume in this area negatively correlated with the MBI-C total score. CONCLUSIONS The impaired cognitive function over all domains and atrophy in the temporal area in the PD-MBI group are in line with posterior cortical circuit deficits in PD, which have been associated with a faster rate of progression to dementia. These initial results suggest that MBI might be an early and important marker for incident cognitive decline and dementia in patients with PD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Zahinoor Ismail
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Alexandru Hanganu
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Mekale Kibreab
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Tracy Hammer
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Jenelle Cheetham
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Iris Kathol
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Justyna R Sarna
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Davide Martino
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Sarah Furtado
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada
| | - Oury Monchi
- From the Department of Clinical Neurosciences (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.) and Departments of Psychiatry and Community Health Sciences (Z.I.), University of Calgary; Hotchkiss Brain Institute (E.J.Y., Z.I., A.H., M.K., T.H., J.C., I.K., J.R.S., D.M., S.F., O.M.), Cumming School of Medicine, Calgary, Alberta; Centre de Recherche (A.H., O.M.), Institut Universitaire de Gériatrie de Montréal; and Department of Psychology (A.H.), University of Montréal, Québec, Canada.
| |
Collapse
|
10
|
Zhou C, Guan XJ, Guo T, Zeng QL, Gao T, Huang PY, Xuan M, Gu QQ, Xu XJ, Zhang MM. Progressive brain atrophy in Parkinson's disease patients who convert to mild cognitive impairment. CNS Neurosci Ther 2019; 26:117-125. [PMID: 31278861 PMCID: PMC6930819 DOI: 10.1111/cns.13188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Aims Cognitive impairment is a common symptom in the trajectory of Parkinson's disease (PD). However, the pathological underpinning is not fully known. We aimed to explore the critical structural alterations in the process of cognitive decline and its relationships with the dopaminergic deficit and the level of related cerebrospinal fluid (CSF) proteins. Methods Ninety‐four patients with PD and 32 controls were included in this study. Neuropsychological tests were performed at baseline and after 28 months to identify which patients had normal cognition and which ones developed PD‐MCI after follow‐up (“converters”). Gray matter atrophy was assessed in cross‐sectional and longitudinal analyses, respectively. The associations between altered GMV with dopamine transporter (DAT) results and the level of CSF proteins were assessed. Results Among the 94 patients with normal cognition at baseline, 24 (mean age, 63.1 years) developed PD‐MCI after 28 months of follow‐up, and 70 (mean age, 62.3 years) remained nonconverters. The converters showed significant right temporal atrophy at baseline and extensive atrophy in temporal lobe at follow‐up. Progressive bilateral frontal lobe atrophy was found in the converters. Baseline right temporal atrophy was correlated with the striatal dopaminergic degeneration in the converters. No correlation was found between the right temporal atrophy and the alterations of CSF proteins. Conclusion Early atrophy in temporal lobes and progressive atrophy in frontal lobes might be a biomarker for developing multidomain impairment of cognition and converting to PD‐MCI. Furthermore, cognition‐related temporal atrophy might be associated with dopaminergic deficit reflected by DAT scan but independent of CSF proteins in patients with PD who convert to PD‐MCI.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Jun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao-Ling Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Yu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan-Quan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Jun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr 2019; 32:825-858. [PMID: 31054104 PMCID: PMC6708046 DOI: 10.1007/s10548-019-00710-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Electromagnetic source characterisation requires accurate volume conductor models representing head geometry and the electrical conductivity field. Head tissue conductivity is often assumed from previous literature, however, despite extensive research, measurements are inconsistent. A meta-analysis of reported human head electrical conductivity values was therefore conducted to determine significant variation and subsequent influential factors. Of 3121 identified publications spanning three databases, 56 papers were included in data extraction. Conductivity values were categorised according to tissue type, and recorded alongside methodology, measurement condition, current frequency, tissue temperature, participant pathology and age. We found variation in electrical conductivity of the whole-skull, the spongiform layer of the skull, isotropic, perpendicularly- and parallelly-oriented white matter (WM) and the brain-to-skull-conductivity ratio (BSCR) could be significantly attributed to a combination of differences in methodology and demographics. This large variation should be acknowledged, and care should be taken when creating volume conductor models, ideally constructing them on an individual basis, rather than assuming them from the literature. When personalised models are unavailable, it is suggested weighted average means from the current meta-analysis are used. Assigning conductivity as: 0.41 S/m for the scalp, 0.02 S/m for the whole skull, or when better modelled as a three-layer skull 0.048 S/m for the spongiform layer, 0.007 S/m for the inner compact and 0.005 S/m for the outer compact, as well as 1.71 S/m for the CSF, 0.47 S/m for the grey matter, 0.22 S/m for WM and 50.4 for the BSCR.
Collapse
|
12
|
Melzer TR, Stark MR, Keenan RJ, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Grenfell S, Horne KL, Young BN, Pascoe MJ, Almuqbel MM, Wang J, Marsh SH, Miller DH, Dalrymple-Alford JC, Anderson TJ. Beta Amyloid Deposition Is Not Associated With Cognitive Impairment in Parkinson's Disease. Front Neurol 2019; 10:391. [PMID: 31105633 PMCID: PMC6492461 DOI: 10.3389/fneur.2019.00391] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
The extent to which Alzheimer neuropathology, particularly the accumulation of misfolded beta-amyloid, contributes to cognitive decline and dementia in Parkinson's disease (PD) is unresolved. Here, we used Florbetaben PET imaging to test for any association between cerebral amyloid deposition and cognitive impairment in PD, in a sample enriched for cases with mild cognitive impairment. This cross-sectional study used Movement Disorders Society level II criteria to classify 115 participants with PD as having normal cognition (PDN, n = 23), mild cognitive impairment (PD-MCI, n = 76), or dementia (PDD, n = 16). We acquired 18F-Florbetaben (FBB) amyloid PET and structural MRI. Amyloid deposition was assessed between the three cognitive groups, and also across the whole sample using continuous measures of both global cognitive status and average performance in memory domain tests. Outcomes were cortical FBB uptake, expressed in centiloids and as standardized uptake value ratios (SUVR) using the Centiloid Project whole cerebellum region as a reference, and regional SUVR measurements. FBB binding was higher in PDD, but this difference did not survive adjustment for the older age of the PDD group. We established a suitable centiloid cut-off for amyloid positivity in Parkinson's disease (31.3), but there was no association of FBB binding with global cognitive or memory scores. The failure to find an association between PET amyloid deposition and cognitive impairment in a moderately large sample, particularly given that it was enriched with PD-MCI patients at risk of dementia, suggests that amyloid pathology is not the primary driver of cognitive impairment and dementia in most patients with PD.
Collapse
Affiliation(s)
- Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand
| | - Megan R Stark
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Ross J Keenan
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Pacific Radiology Group, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Michael R MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Toni L Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand
| | - Leslie Livingston
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Sophie Grenfell
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kyla-Louise Horne
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Bob N Young
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Maddie J Pascoe
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Mustafa M Almuqbel
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Pacific Radiology Group, Christchurch, New Zealand
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Steven H Marsh
- Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
| | - David H Miller
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Institute of Neurology, University College London, London, United Kingdom
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand.,Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand Rangahau Roro Aotearoa Centre of Research Excellence, Christchurch, New Zealand.,Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
13
|
Weil RS, Winston JS, Leyland L, Pappa K, Mahmood RB, Morris HR, Rees G. Neural correlates of early cognitive dysfunction in Parkinson's disease. Ann Clin Transl Neurol 2019; 6:902-912. [PMID: 31139688 PMCID: PMC6529983 DOI: 10.1002/acn3.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Dementia is a common and feared aspect of Parkinson's disease but there are no robust predictors of cognitive outcome. Visuoperceptual deficits are linked to risk of dementia in Parkinson's disease but whether they predict cognitive change is not known, and the neural substrates of visuoperceptual dysfunction in Parkinson's have not yet been identified. METHODS We compared patients with Parkinson's disease and unaffected controls who underwent BOLD fMRI while performing our previously validated visuoperceptual task and tested how functional connectivity between task-specific regions and the rest of the brain differed between patients who performed well and poorly in the task. RESULTS We show that task performance at baseline predicts change in cognition in Parkinson's disease after 1 year. Our task-based fMRI study showed that the performance in this task is associated with activity in the posterior cingulate cortex/precuneus. We found that functional connectivity between this region and dorsomedial prefrontal cortex was reduced in poor performers compared with good performers of this task. INTERPRETATION Our findings suggest that functional connectivity is reduced between posterior and anterior hubs of the default mode network in Parkinson's patients who are likely to progress to worsening cognitive dysfunction. Our work implicates posterior default mode nodes and their connections as key brain regions in early stages of dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Rimona S. Weil
- Dementia Research CentreUCLLondonUnited Kingdom,Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom
| | - Joel S. Winston
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | | | - Katerina Pappa
- Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| | | | - Huw R. Morris
- Department of Clinical and Motor NeuroscienceUCL Queen Square Institute of NeurologyLondonUnited Kingdom,Movement Disorders CentreUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Geraint Rees
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| |
Collapse
|
14
|
Kunst J, Marecek R, Klobusiakova P, Balazova Z, Anderkova L, Nemcova-Elfmarkova N, Rektorova I. Patterns of Grey Matter Atrophy at Different Stages of Parkinson's and Alzheimer's Diseases and Relation to Cognition. Brain Topogr 2018; 32:142-160. [PMID: 30206799 DOI: 10.1007/s10548-018-0675-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Using MRI, a characteristic pattern of grey matter (GM) atrophy has been described in the early stages of Alzheimer's disease (AD); GM patterns at different stages of Parkinson's disease (PD) have been inconclusive. Few studies have directly compared structural changes in groups with mild cognitive impairment (MCI) caused by different pathologies (AD, PD). We used several analytical methods to determine GM changes at different stages of both PD and AD. We also evaluated associations between GM changes and cognitive measurements. Altogether 144 subjects were evaluated: PD with normal cognition (PD-NC; n = 23), PD with MCI (PD-MCI; n = 24), amnestic MCI (aMCI; n = 27), AD (n = 12), and age-matched healthy controls (HC; n = 58). All subjects underwent structural MRI and cognitive examination. GM volumes were analysed using two different techniques: voxel-based morphometry (VBM) and source-based morphometry (SBM), which is a multivariate method. In addition, cortical thickness (CT) was evaluated to assess between-group differences in GM. The cognitive domain z-scores were correlated with GM changes in individual patient groups. GM atrophy in the anterior and posterior cingulate, as measured by VBM, in the temporo-fronto-parietal component, as measured by SBM, and in the posterior cortical regions as well as in the anterior cingulate and frontal region, as measured by CT, differentiated aMCI from HC. Major hippocampal and temporal lobe atrophy (VBM, SBM) and to some extent occipital atrophy (SBM) differentiated AD from aMCI and from HC. Correlations with cognitive deficits were present only in the AD group. PD-MCI showed greater GM atrophy than PD-NC in the orbitofrontal regions (VBM), which was related to memory z-scores, and in the left superior parietal lobule (CT); more widespread limbic and fronto-parieto-occipital neocortical atrophy (all methods) differentiated this group from HC. Only CT revealed subtle GM atrophy in the anterior cingulate, precuneus, and temporal neocortex in PD-NC as compared to HC. None of the methods differentiated PD-MCI from aMCI. Both MCI groups showed distinct limbic and fronto-temporo-parietal neocortical atrophy compared to HC with no specific between-group differences. AD subjects displayed a typical pattern of major temporal lobe atrophy which was associated with deficits in all cognitive domains. VBM and CT were more sensitive than SBM in identifying frontal and posterior cortical atrophy in PD-MCI as compared to PD-NC. Our data support the notion that the results of studies using different analytical methods cannot be compared directly. Only CT measures revealed some subtle differences between HC and PD-NC.
Collapse
Affiliation(s)
- Jonas Kunst
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Radek Marecek
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Zuzana Balazova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Lubomira Anderkova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | | | - Irena Rektorova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic. .,Movement Disorders Centre, First Department of Neurology, St Anne's University Hospital, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
15
|
Brain degeneration in Parkinson’s disease patients with cognitive decline: a coordinate-based meta-analysis. Brain Imaging Behav 2018; 13:1021-1034. [DOI: 10.1007/s11682-018-9922-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Siderowf A, Aarsland D, Mollenhauer B, Goldman JG, Ravina B. Biomarkers for cognitive impairment in Lewy body disorders: Status and relevance for clinical trials. Mov Disord 2018; 33:528-536. [DOI: 10.1002/mds.27355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/13/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew Siderowf
- Department of Neurology, Perelman School of Medicine; University of Pennsylvania; Philadelphia Philadelphia USA
| | - Dag Aarsland
- Department of Old Age Psychiatry; Kings College; London United Kingdom
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Klinikstrasse 16, 34128 Kassel and University Medical Center, Department of Neurology; Göttingen Germany
| | - Jennifer G. Goldman
- Department of Neurological Sciences; Rush University Medical Center; Chicago Illinois
| | | |
Collapse
|
17
|
Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci Lett 2017; 658:121-132. [DOI: 10.1016/j.neulet.2017.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
|
18
|
Selnes P, Stav AL, Johansen KK, Bjørnerud A, Coello C, Auning E, Kalheim L, Almdahl IS, Hessen E, Zetterberg H, Blennow K, Aarsland D, Fladby T. Impaired synaptic function is linked to cognition in Parkinson's disease. Ann Clin Transl Neurol 2017; 4:700-713. [PMID: 29046879 PMCID: PMC5634342 DOI: 10.1002/acn3.446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Cognitive impairment is frequent in Parkinson's disease, but the underlying mechanisms are insufficiently understood. Because cortical metabolism is reduced in Parkinson's disease and closely associated with cognitive impairment, and CSF amyloid‐β species are reduced and correlate with neuropsychological performance in Parkinson's disease, and amyloid‐β release to interstitial fluid may be related to synaptic activity; we hypothesize that synapse dysfunction links cortical hypometabolism, reduced CSF amyloid‐β, and presynaptic deposits of α‐synuclein. We expect a correlation between hypometabolism, CSF amyloid‐β, and the synapse related‐markers CSF neurogranin and α‐synuclein. Methods Thirty patients with mild‐to‐moderate Parkinson's disease and 26 healthy controls underwent a clinical assessment, lumbar puncture, MRI, 18F‐fludeoxyglucose‐PET, and a neuropsychological test battery (repeated for the patients after 2 years). Results All subjects had CSF amyloid‐β 1‐42 within normal range. In Parkinson's disease, we found strong significant correlations between cortical glucose metabolism, CSF Aβ, α‐synuclein, and neurogranin. All PET CSF biomarker‐based cortical clusters correlated strongly with cognitive parameters. CSF neurogranin levels were significantly lower in mild‐to‐moderate Parkinson's disease compared to controls, correlated with amyloid‐β and α‐synuclein, and with motor stage. There was little change in cognition after 2 years, but the cognitive tests that were significantly different, were also significantly associated with cortical metabolism. No such correlations were found in the control group. Interpretation CSF Aβ, α‐synuclein, and neurogranin concentrations are related to cortical metabolism and cognitive decline. Synaptic dysfunction due to Aβ and α‐synuclein dysmetabolism may be central in the evolution of cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Per Selnes
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway
| | - Ane Løvli Stav
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway
| | | | - Atle Bjørnerud
- Department of Diagnostic Physics Oslo University Hospital, Rikshospitalet Oslo Norway.,Department of Physics University of Oslo Oslo Norway
| | - Christopher Coello
- Neural Systems Laboratory Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Eirik Auning
- Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway.,Department of Geriatric Psychiatry Akershus University Hospital Lørenskog Norway
| | - Lisa Kalheim
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway
| | - Ina Selseth Almdahl
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway
| | - Erik Hessen
- Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway.,Department of Psychology University of Oslo Oslo Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden.,Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden.,Department of Molecular Neuroscience UCL Institute of Neurology Queen Square London United Kingdom.,UK Dementia Research Institute London United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden.,Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Dag Aarsland
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Department of Old Age Psychiatry Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom.,Center for Age-Related Diseases Stavanger University Hospital Stavanger Norway
| | - Tormod Fladby
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine University of Oslo Campus Ahus Oslo Norway
| |
Collapse
|
19
|
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna) 2017; 124:915-964. [PMID: 28378231 PMCID: PMC5514207 DOI: 10.1007/s00702-017-1717-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Roberto De Marzi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, Duncan GW, Mollenhauer B, Owen AM, Khoo TK, Brooks DJ, Rowe JB, Barker RA, Burn DJ, O'Brien JT. Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease. Neurobiol Aging 2017; 55:78-90. [PMID: 28431288 PMCID: PMC5454799 DOI: 10.1016/j.neurobiolaging.2017.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
We investigated whole-brain atrophy and ventricular enlargement over 18 months in nondemented Parkinson's disease (PD) and examined their associations with clinical measures and baseline CSF markers. PD subjects (n = 100) were classified at baseline into those with mild cognitive impairment (MCI; PD-MCI, n = 36) and no cognitive impairment (PD-NC, n = 64). Percentage of whole-brain volume change (PBVC) and ventricular expansion over 18 months were assessed with FSL-SIENA and ventricular enlargement (VIENA) respectively. PD-MCI showed increased global atrophy (-1.1% ± 0.8%) and ventricular enlargement (6.9 % ± 5.2%) compared with both PD-NC (PBVC: -0.4 ± 0.5, p < 0.01; VIENA: 2.1% ± 4.3%, p < 0.01) and healthy controls. In a subset of 35 PD subjects, CSF levels of tau, and Aβ42/Aβ40 ratio were correlated with PBVC and ventricular enlargement respectively. The sample size required to demonstrate a 20% reduction in PBVC and VIENA was approximately 1/15th of that required to detect equivalent changes in cognitive decline. These findings suggest that longitudinal MRI measurements have potential to serve as surrogate markers to complement clinical assessments for future disease-modifying trials in PD.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridgeshire, UK
| | - Michael J Firbank
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael A Lawson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon W Duncan
- Medicine of the Elderly, Western General Hospital, Edinburgh, UK
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Adrian M Owen
- Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| | - Tien K Khoo
- Menzies Health Institute, Queensland and School of Medicine, Griffith University, Gold Coast, Australia
| | - David J Brooks
- Division of Neuroscience, Imperial College London, London, UK; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - David J Burn
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK.
| |
Collapse
|
21
|
Fan X, Gaur U, Sun L, Yang D, Yang M. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging. Mech Ageing Dev 2017; 164:108-112. [PMID: 28472635 DOI: 10.1016/j.mad.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are evolutionarily conserved homologues proteins which are closely related members of the transforming growth factor β superfamily. They are often perceived to serve similar or overlapping roles. Recently, GDF11 has been identified as playing a role during aging, however there are conflicting reports as to the nature of this role. In this review, we will discuss the literature regarding functions of GDF11 and myostatin in the heart, brain, and skeletal muscle during aging. Consequently we expect to develop a deeper understanding about the function of these two proteins in organismal aging and disease.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Lin Sun
- Jiangsu Vocational College of Medicine, Yancheng, 224000, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China.
| |
Collapse
|
22
|
Phenotype of postural instability/gait difficulty in Parkinson disease: relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters. Sci Rep 2017; 7:44872. [PMID: 28332604 PMCID: PMC5362957 DOI: 10.1038/srep44872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Parkinson disease (PD) is identified as tremor-dominant (TD) and postural instability and gait difficulty (PIGD) phenotypes. The relationships between motor phenotypes and cognitive impairment and the underlying mechanisms relating pathological proteins and neurotransmitters in cerebrospinal fluid (CSF) are unknown. We evaluated the motor symptoms and cognitive function by scales, and detected the levels of pathological proteins and neurotransmitters in CSF. TD group and PIGD group had significantly higher levels of total tau, tau phosphorylated at the position of threonine 181(P-tau181t), threonine 231, serine 396, serine 199 and lower β amyloid (Aβ)1–42 level in CSF than those in control group; PIGD group had significantly higher P-tau181t level and lower Aβ1–42 level than those in TD group. In PD group, PIGD severity was negatively correlated with MoCA score and Aβ1–42 level in CSF, and positively correlated with Hoehn-Yahr stage and P-tau181t level in CSF. In PIGD group, PIGD severity was negatively correlated with homovanillic acid (HVA) level in CSF, and HVA level was positively correlated with Aβ1–42 level in CSF. PIGD was significantly correlated with cognitive impairment, which underlying mechanism might be involved in Aβ1–42 aggregation in brain and relevant neurochemical disturbance featured by the depletion of HVA in CSF.
Collapse
|
23
|
Abstract
Dementia is a frequent problem encountered in advanced stages of Parkinson disease (PD). In recent years, research has focused on the pre-dementia stages of cognitive impairment in PD, including mild cognitive impairment (MCI). Several longitudinal studies have shown that MCI is a harbinger of dementia in PD, although the course is variable, and stabilization of cognition - or even reversal to normal cognition - is not uncommon. In addition to limbic and cortical spread of Lewy pathology, several other mechanisms are likely to contribute to cognitive decline in PD, and a variety of biomarker studies, some using novel structural and functional imaging techniques, have documented in vivo brain changes associated with cognitive impairment. The evidence consistently suggests that low cerebrospinal fluid levels of amyloid-β42, a marker of comorbid Alzheimer disease (AD), predict future cognitive decline and dementia in PD. Emerging genetic evidence indicates that in addition to the APOE*ε4 allele (an established risk factor for AD), GBA mutations and SCNA mutations and triplications are associated with cognitive decline in PD, whereas the findings are mixed for MAPT polymorphisms. Cognitive enhancing medications have some effect in PD dementia, but no convincing evidence that progression from MCI to dementia can be delayed or prevented is available, although cognitive training has shown promising results.
Collapse
|
24
|
Andersen AD, Binzer M, Stenager E, Gramsbergen JB. Cerebrospinal fluid biomarkers for Parkinson's disease - a systematic review. Acta Neurol Scand 2017; 135:34-56. [PMID: 26991855 DOI: 10.1111/ane.12590] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/14/2022]
Abstract
Diagnosis of Parkinson's disease (PD) relies on clinical history and physical examination, but misdiagnosis is common in early stages. Identification of biomarkers for PD may allow early and more precise diagnosis and monitoring of dopamine replacement strategies and disease modifying treatments. Developments in analytical chemistry allow the detection of large numbers of molecules in plasma or cerebrospinal fluid, associated with the pathophysiology or pathogenesis of PD. This systematic review includes cerebrospinal fluid biomarker studies focusing on different disease pathways: oxidative stress, neuroinflammation, lysosomal dysfunction and proteins involved in PD and other neurodegenerative disorders, focusing on four clinical domains: their ability to (1) distinguish PD from healthy subjects and other neurodegenerative disorders as well as their relation to (2) disease duration after initial diagnosis, (3) severity of disease (motor symptoms) and (4) cognitive dysfunction. Oligomeric alpha-synuclein might be helpful in the separation of PD from controls. Through metabolomics, changes in purine and tryptophan metabolism have been discovered in patients with PD. Neurofilament light chain (NfL) has a significant role in distinguishing PD from other neurodegenerative diseases. Several oxidative stress markers are related to disease severity, with the antioxidant urate also having a prognostic value in terms of disease severity. Increased levels of amyloid and tau-proteins correlate with cognitive decline and may have prognostic value for cognitive deficits in PD. In the future, larger longitudinal studies, corroborating previous research on viable biomarker candidates or using metabolomics identifying a vast amount of potential biomarkers, could be a good approach.
Collapse
Affiliation(s)
- A. D. Andersen
- Department of Neurology; Hospital of Southern Jutland; Sønderborg Denmark
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
| | - M. Binzer
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
| | - E. Stenager
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
- The Multiple Sclerosis Clinic of Southern Jutland; (Vejle, Sonderborg, Esbjerg) Denmark
| | - J. B. Gramsbergen
- Institute of Molecular Medicine, Neurobiological Research; University of Southern Denmark; Odense Denmark
| |
Collapse
|
25
|
Naturally Occurring Autoantibodies against Tau Protein Are Reduced in Parkinson's Disease Dementia. PLoS One 2016; 11:e0164953. [PMID: 27802290 PMCID: PMC5089716 DOI: 10.1371/journal.pone.0164953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/04/2016] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Altered levels of naturally occurring autoantibodies (nAbs) against disease-associated neuronal proteins have been reported for neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Recent histopathologic studies suggest a contribution of both Lewy body- and AD-related pathology to Parkinson's disease dementia (PDD). Therefore, we explored nAbs against alpha-synuclein (αS), tau and β-amyloid (Aβ) in PDD compared to cognitively normal PD patients. Materials and Methods We established three different ELISAs to quantify the nAbs-tau, nAbs-αS, and nAbs-Aβ levels and avidity towards their specific antigen in serum samples of 18 non-demented (PDND) and 18 demented PD patients (PDD), which were taken from an ongoing multi-center cohort study (DEMPARK/LANDSCAPE). Results PDD patients had significantly decreased nAbs-tau serum levels compared to PDND patients (p = 0.007), whereas the serum titers of nAbs-αS and nAbs-Aβ were unchanged. For all three nAbs, no significant differences in avidity were found between PDD and PDND cohorts. However, within both patient groups, nAbs-tau showed lowest avidity to their antigen, followed by nAbs-αS, and nAbs-Aβ. Though, due to a high interassay coefficient of variability and the exclusion of many samples below the limit of detection, conclusions for nAbs-Aβ are only conditionally possible. Conclusion We detected a significantly decreased nAbs-tau serum level in PDD patients, indicating a potential linkage between nAbs-tau serum titer and cognitive deficits in PD. Thus, further investigation in larger samples is justified to confirm our findings.
Collapse
|
26
|
Gao R, Zhang G, Chen X, Yang A, Smith G, Wong DF, Zhou Y. CSF Biomarkers and Its Associations with 18F-AV133 Cerebral VMAT2 Binding in Parkinson's Disease-A Preliminary Report. PLoS One 2016; 11:e0164762. [PMID: 27764160 PMCID: PMC5072678 DOI: 10.1371/journal.pone.0164762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) biomarkers, such as α-synuclein (α-syn), amyloid beta peptide 1-42 (Aβ1-42), phosphorylated tau (181P) (p-tau), and total tau (t-tau), have long been associated with the development of Parkinson disease (PD) and other neurodegenerative diseases. In this investigation, we reported the assessment of CSF biomarkers and their correlations with vesicular monoamine transporter 2 (VMAT2) bindings measured with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-AV133) that is being developed as a biomarker for PD. We test the hypothesis that monoaminergic degeneration was correlated with CSF biomarker levels in untreated PD patients. METHODS The available online data from the Parkinson's Progression Markers Initiative study (PPMI) project were collected and analyzed, which include demographic information, clinical evaluations, CSF biomarkers (α-syn, Aβ1-42, p-tau, and t-tau), 18F-AV133 brain PET, and T1 weighted MRIs. Region of interest (ROI) and voxel-wise Pearson correlation between standardized uptake value ratio (SUVR) and CSF biomarkers were calculated. RESULTS Our major findings are: 1) Compared with controls, CSF α-syn and tau levels decreased significantly in PD; 2) α-syn was closely correlated with Aβ1-42 and tau in PD, especially in early-onset patients; and 3) hypothesis-driven ROI analysis found a significant negative correlation between CSF Aβ1-42 levels and VMAT2 densities in post cingulate, left caudate, left anterior putamen, and left ventral striatum in PDs. CSF t-tau and p-tau levels were significantly negatively related to VMAT2 SUVRs in substantia nigra and left ventral striatum, respectively. Voxel-wise analysis showed that left caudate, parahippocampal gyrus, insula and temporal lobe were negatively correlated with Aβ1-42. In addition, superior frontal gyrus and transverse temporal gyrus were negatively correlated with CSF p-tau levels. CONCLUSION These results suggest that monoaminergic degeneration in PD is correlated with CSF biomarkers associated with cognitive impairment in neurodegenerative diseases including Alzheimer's disease. The association between loss of dopamine synaptic function and pathologic protein accumulations in PD indicates an important role of CSF biomarkers in PD development.
Collapse
Affiliation(s)
- Rui Gao
- Department of Nuclear Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, China
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States of America
| | - Guangjian Zhang
- Department of Surgery, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xueqi Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States of America
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Aimin Yang
- Department of Nuclear Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Gwenn Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins Bayview Medical Center, Baltimore, Maryland 21287, United States of America
| | - Dean F. Wong
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States of America
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland 21205, United States of America
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States of America
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, United States of America
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States of America
| |
Collapse
|
27
|
Compta Y, Buongiorno M, Bargalló N, Valldeoriola F, Muñoz E, Tolosa E, Ríos J, Cámara A, Fernández M, Martí MJ. White matter hyperintensities, cerebrospinal amyloid-β and dementia in Parkinson's disease. J Neurol Sci 2016; 367:284-90. [PMID: 27423605 DOI: 10.1016/j.jns.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/24/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yaroslau Compta
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Mariateresa Buongiorno
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Núria Bargalló
- Magnetic Resonance Unit, Neurorradiology Section, Centre de Diagnòstic per la Imatge (CDI), IDIBAPS, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - José Ríos
- Statistics and Methodologic Support Unit, Unitat d'Avaluació, Suport i Prevenció (UASP), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Maria J Martí
- Parkinson disease & Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències (ICN), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
28
|
Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC. Biomarkers for dementia and mild cognitive impairment in Parkinson's disease. Mov Disord 2016; 31:861-81. [PMID: 27193487 DOI: 10.1002/mds.26662] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022] Open
Abstract
Cognitive decline is one of the most frequent and disabling nonmotor features of Parkinson's disease. Around 30% of patients with Parkinson's disease experience mild cognitive impairment, a well-established risk factor for the development of dementia. However, mild cognitive impairment in patients with Parkinson's disease is a heterogeneous entity that involves different types and extents of cognitive deficits. Because it is not currently known which type of mild cognitive impairment confers a higher risk of progression to dementia, it would be useful to define biomarkers that could identify these patients to better study disease progression and possible interventions. In this sense, the identification among patients with Parkinson's disease and mild cognitive impairment of biomarkers associated with dementia would allow the early detection of this process. This review summarizes studies from the past 25 years that have assessed the potential biomarkers of dementia and mild cognitive impairment in Parkinson's disease patients. Despite the potential importance, no biomarker has as yet been validated. However, features such as low levels of epidermal and insulin-like growth factors or uric acid in plasma/serum and of Aß in CSF, reduction of cerebral cholinergic innervation and metabolism measured by PET mainly in posterior areas, and hippocampal atrophy in MRI might be indicative of distinct deficits with a distinct risk of dementia in subgroups of patients. Longitudinal studies combining the existing techniques and new approaches are needed to identify patients at higher risk of dementia. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Manuel Delgado-Alvarado
- Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Belén Gago
- Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene Navalpotro-Gomez
- Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Haritz Jiménez-Urbieta
- Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María C Rodriguez-Oroz
- Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Neurology Department, University Hospital Donostia, San Sebastián, Spain.,Ikerbasque (Basque Foundation for Science), Bilbao, Spain.,Basque Center on Cognition, Brain and Language (BCBL), San Sebastián, Spain.,Physiology Department, Medical School University of Navarra, Pamplona, Spain
| |
Collapse
|
29
|
Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson’s disease. J Neurol 2016; 263:1178-87. [DOI: 10.1007/s00415-016-8122-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022]
|
30
|
Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ, Aarsland D, Svenningsson P, Farotti L, Verbeek MM, Schlossmacher MG. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:290-317. [DOI: 10.1111/jnc.13390] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik; Kassel Germany
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Irena Rektorova
- Applied Neuroscience Group; CEITEC MU; Masaryk University; Brno Czech Republic
| | - Milica G. Kramberger
- Department of Neurology; University Medical Center Ljubljana; Ljubljana Slovenia
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Maria Pikkarainen
- Institute of Clinical Medicine / Neurology; University of Eastern Finland; Kuopio Finland
| | - Walter J. Schulz-Schaeffer
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Dag Aarsland
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Per Svenningsson
- Department for Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Lucia Farotti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Marcel M. Verbeek
- Department of Neurology; Department of Laboratory Medicine; Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Michael G. Schlossmacher
- Program in Neuroscience and Division of Neurology; The Ottawa Hospital; University of Ottawa Brain & Mind Research Institute; Ottawa Ontario Canada
| |
Collapse
|
31
|
Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson's disease: a cross-sectional study. NPJ PARKINSONS DISEASE 2016; 2:15030. [PMID: 28725691 PMCID: PMC5516586 DOI: 10.1038/npjparkd.2015.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 12/10/2015] [Indexed: 11/14/2022]
Abstract
Cognition is often affected early in Parkinson’s disease (PD). Lewy body and amyloid β (Aβ) pathology and cortical atrophy may be involved. The aim of this study was to examine whether medial temporal lobe structural changes may be linked to cerebrospinal fluid (CSF) biomarker levels and cognition in early PD. PD patients had smaller volumes of total hippocampus, presubiculum, subiculum, CA2–3, CA4-DG, and hippocampal tail compared with normal controls (NCs). In the PD group, lower CSF Aβ38 and 42 were significant predictors for thinner perirhinal cortex. Lower Aβ42 and smaller presubiculum and subiculum predicted poorer verbal learning and delayed verbal recall. Smaller total hippocampus, presubiculum and subiculum predicted poorer visuospatial copying. Lower Aβ38 and 40 and thinner perirhinal cortex predicted poorer delayed visual reproduction. In conclusion, smaller volumes of hippocampal subfields and subhippocampal cortex thickness linked to lower CSF Aβ levels may contribute to cognitive impairment in early PD. Thirty-three early PD patients (13 without, 5 with subjective, and 15 with mild cognitive impairment) and NC had 3 T magnetic resonance imaging (MRI) scans. The MRI scans were post processed for volumes of hippocampal subfields and entorhinal and perirhinal cortical thickness. Lumbar puncture for CSF biomarkers Aβ38, 40, 42, total tau, phosphorylated tau (Innogenetics), and total α-synuclein (Meso Scale Diagnostics) were performed. Multiple regression analyses were used for between-group comparisons of the MRI measurements in the NC and PD groups and for assessment of CSF biomarkers and neuropsychological tests in relation to morphometry in the PD group.
Collapse
|
32
|
Shin NY, Shin YS, Lee PH, Yoon U, Han S, Kim DJ, Lee SK. Different Functional and Microstructural Changes Depending on Duration of Mild Cognitive Impairment in Parkinson Disease. AJNR Am J Neuroradiol 2015; 37:897-903. [PMID: 26705323 DOI: 10.3174/ajnr.a4626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/26/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The higher cortical burden of Lewy body and Alzheimer disease-type pathology has been reported to be associated with a faster onset of cognitive impairment of Parkinson disease. So far, there has been a few studies only about the changes of gray matter volume depending on duration of cognitive impairment in Parkinson disease. Therefore, our aim was to evaluate the different patterns of structural and functional changes in Parkinson disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. MATERIALS AND METHODS Fifty-nine patients with Parkinson disease with mild cognitive impairment were classified into 2 groups on the basis of shorter (<1 year, n = 16) and longer (≥1 year, n = 43) durations of parkinsonism before mild cognitive impairment. Fifteen drug-naïve patients with de novo Parkinson disease with intact cognition were included for comparison. Cortical thickness, Tract-Based Spatial Statistics, and seed-based resting-state functional connectivity analyses were performed. Age, sex, years of education, age at onset of parkinsonism, and levodopa-equivalent dose were included as covariates. RESULTS The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased fractional anisotropy and increased mean and radial diffusivity values in the frontal areas compared with the group with longer duration of parkinsonism before mild cognitive impairment (corrected P < .05). The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity in the default mode network area when the left or right posterior cingulate was used as a seed, and in the dorsolateral prefrontal areas when the left or right caudate was used as a seed (corrected P < .05). The group with longer duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity mainly in the medial prefrontal cortex when the left or right posterior cingulate was used as a seed, and in the parieto-occipital areas when the left or right caudate was used as a seed (corrected P < .05). No differences in cortical thickness were found in all group contrasts. CONCLUSIONS Resting-state functional connectivity and WM alterations might be useful imaging biomarkers for identifying changes in patients with Parkinson disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. The functional and microstructural substrates may topographically differ depending on the rate of cognitive decline in these patients.
Collapse
Affiliation(s)
- N-Y Shin
- From the Department of Radiology (N.-Y.S.), Ewha Womans University School of Medicine, Seoul, Korea Radiology (N.-Y.S., D.J.K., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - Y S Shin
- Department of Psychology (Y.S.S., S.H.), Yonsei University, Seoul, Korea
| | - P H Lee
- Departments of Neurology (P.H.L.)
| | - U Yoon
- Department of Biomedical Engineering (U.Y.), College of Health and Medical Science, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - S Han
- Department of Psychology (Y.S.S., S.H.), Yonsei University, Seoul, Korea
| | - D J Kim
- Radiology (N.-Y.S., D.J.K., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| | - S-K Lee
- Radiology (N.-Y.S., D.J.K., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Jia X, Liang P, Li Y, Shi L, Wang D, Li K. Longitudinal Study of Gray Matter Changes in Parkinson Disease. AJNR Am J Neuroradiol 2015; 36:2219-26. [PMID: 26359153 DOI: 10.3174/ajnr.a4447] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/20/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. MATERIALS AND METHODS Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. RESULTS Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. CONCLUSIONS The observed progressive changes in gray matter volume in Parkinson disease may provide new insights into the neurodegenerative process. The current findings suggest that the caudate volume loss may contribute to cognitive decline in patients with Parkinson disease and the progressive thalamus enlargement may have relevance to tremor severity in Parkinson disease.
Collapse
Affiliation(s)
- X Jia
- From the Department of Radiology (X.J., P.L., Y.L., K.L.), Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory of MRI and Brain Informatics (X.J., P.L., Y.L., K.L.), Beijing, China
| | - P Liang
- From the Department of Radiology (X.J., P.L., Y.L., K.L.), Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory of MRI and Brain Informatics (X.J., P.L., Y.L., K.L.), Beijing, China
| | - Y Li
- From the Department of Radiology (X.J., P.L., Y.L., K.L.), Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory of MRI and Brain Informatics (X.J., P.L., Y.L., K.L.), Beijing, China
| | - L Shi
- Department of Imaging and Interventional Radiology (L.S., D.W.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - D Wang
- Department of Imaging and Interventional Radiology (L.S., D.W.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K Li
- From the Department of Radiology (X.J., P.L., Y.L., K.L.), Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory of MRI and Brain Informatics (X.J., P.L., Y.L., K.L.), Beijing, China
| |
Collapse
|
34
|
Stav AL, Aarsland D, Johansen KK, Hessen E, Auning E, Fladby T. Amyloid-β and α-synuclein cerebrospinal fluid biomarkers and cognition in early Parkinson's disease. Parkinsonism Relat Disord 2015; 21:758-64. [DOI: 10.1016/j.parkreldis.2015.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023]
|
35
|
Lin CH, Wu RM. Biomarkers of cognitive decline in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:431-43. [PMID: 25737398 DOI: 10.1016/j.parkreldis.2015.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
Cognitive impairment is a frequent and devastating non-motor symptom of Parkinson's disease (PD). Impaired cognition has a major impact on either quality of life or mortality in patients with PD. Notably, the rate of cognitive decline and pattern of early cognitive deficits in PD are highly variable between individuals. Given that the underlying mechanisms of cognitive decline or dementia associated with PD remain unclear, there is currently no mechanism-based treatment available. Identification of biological markers, including neuroimaging, biofluids and common genetic variants, that account for the heterogeneity of PD related cognitive decline could provide important insights into the pathological processes that underlie cognitive impairment in PD. These combined biomarker approaches will enable early diagnosis and provide indicators of cognitive progression in PD patients. This review summarizes recent advances in the development of biomarkers for cognitive impairments in PD.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
36
|
Voxelwise meta-analysis of gray matter anomalies in Parkinson variant of multiple system atrophy and Parkinson's disease using anatomic likelihood estimation. Neurosci Lett 2014; 587:79-86. [PMID: 25484255 DOI: 10.1016/j.neulet.2014.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/30/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Numerous voxel-based morphometry (VBM) studies on gray matter (GM) in patients with the Parkinson variant of multiple system atrophy (MSA-P) and Parkinson's disease (PD) have been separately conducted. Identifying the different neuroanatomical changes in GM between MSA-P and PD through meta-analysis may aid the differential diagnosis of MSA-P and PD. A systematic review of VBM studies on patients with MSA-P and PD compared to healthy controls (HC) from the PubMed and Embase databases between January 1995 and June 2014 was conducted. Five studies comparing MSA-P with HC and twenty-three studies comparing PD with HC were included. The anatomical distribution of the coordinates of GM volume (GMV) differences was analyzed using the anatomical likelihood estimation (ALE) method. GMV reductions were present in the bilateral putamen, claustrum, insula, midbrain and left cerebellum in MSA-P. In PD, GMV decreases were present in the frontal, parietal, occipital and limbic lobes. Subtraction meta-analysis was performed to explore the differences in GM abnormalities between MSA-P and PD during the early stage of the disease. For patients with disease duration within 5 years, compared with PD, the decrease in GMV focused on the bilateral putamen and claustrum in MSA-P. In contrast, for patients with disease duration within 3 years, no significant GMV difference was found between MSA-P and PD. Our meta-analysis indicated that the atrophy of bilateral putamen or claustrum is not a neuroanatomical marker for distinguishing MSA-P from PD during the early stage by using the VBM method.
Collapse
|
37
|
Compta Y, Valente T, Saura J, Segura B, Iranzo Á, Serradell M, Junqué C, Tolosa E, Valldeoriola F, Muñoz E, Santamaria J, Cámara A, Fernández M, Fortea J, Buongiorno M, Molinuevo JL, Bargalló N, Martí MJ. Correlates of cerebrospinal fluid levels of oligomeric- and total-α-synuclein in premotor, motor and dementia stages of Parkinson’s disease. J Neurol 2014; 262:294-306. [DOI: 10.1007/s00415-014-7560-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 11/28/2022]
|
38
|
Vranová HP, Hényková E, Kaiserová M, Menšíková K, Vaštík M, Mareš J, Hluštík P, Zapletalová J, Strnad M, Stejskal D, Kaňovský P. Tau protein, beta-amyloid1–42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J Neurol Sci 2014; 343:120-4. [DOI: 10.1016/j.jns.2014.05.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
39
|
Imaging changes associated with cognitive abnormalities in Parkinson's disease. Brain Struct Funct 2014; 220:2249-61. [PMID: 24816399 DOI: 10.1007/s00429-014-0785-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/22/2014] [Indexed: 01/12/2023]
Abstract
The current study investigates both gray and white matter changes in non-demented Parkinson's disease (PD) patients with varying degrees of mild cognitive deficits and elucidates the relationships between the structural changes and clinical sequelae of PD. Twenty-six PD patients and 15 healthy controls (HCs) were enrolled in the study. Participants underwent T1-weighted and diffusion tensor imaging (DTI) scans. Their cognition was assessed using a neuropsychological battery. Compared with HCs, PD patients showed significant cortical thinning in sensorimotor (left pre- and postcentral gyri) and cognitive (left dorsolateral superior frontal gyrus [DLSFG]) regions. The DLSFG cortical thinning correlated with executive and global cognitive impairment in PD patients. PD patients showed white matter abnormalities as well, primarily in bilateral frontal and temporal regions, which also correlated with executive and global cognitive impairment. These results seem to suggest that both gray and white matter changes in the frontal regions may constitute an early pathological substrate of cognitive impairment of PD providing a sensitive biomarker for brain changes in PD.
Collapse
|
40
|
Pereira JB, Svenningsson P, Weintraub D, Brønnick K, Lebedev A, Westman E, Aarsland D. Initial cognitive decline is associated with cortical thinning in early Parkinson disease. Neurology 2014; 82:2017-25. [PMID: 24808018 DOI: 10.1212/wnl.0000000000000483] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Our aim was to assess cortical thickness in a large multicenter cohort of drug-naive patients with early Parkinson disease (PD), with and without mild cognitive impairment (MCI), and explore the cognitive correlates of regional cortical thinning. METHODS One hundred twenty-three newly diagnosed patients with PD and 56 healthy controls with 3-tesla structural MRI scans and complete neuropsychological assessment from the Parkinson's Progression Markers Initiative were included. Modified Movement Disorders Society Task Force level II criteria were applied to diagnose MCI in PD. FreeSurfer image processing and analysis software was used to measure cortical thickness across groups and the association with cognitive domains and tests. RESULTS In patients with MCI, atrophy was found in temporal, parietal, frontal, and occipital areas compared with controls. Specific regional thinning in the right inferior temporal cortex was also found in cognitively normal patients. Memory, executive, and visuospatial performance was associated with temporoparietal and superior frontal thinning, suggesting a relationship between cognitive impairment and both anterior and posterior cortical atrophy in the whole patient sample. CONCLUSIONS These findings confirm that MCI is associated with widespread cortical atrophy. In addition, they suggest that regional cortical thinning is already present at the time of diagnosis in patients with early, untreated PD who do not meet the criteria for MCI. Together, the results indicate that cortical thinning can serve as a marker for initial cognitive decline in early PD.
Collapse
Affiliation(s)
- Joana B Pereira
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway.
| | - Per Svenningsson
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| | - Daniel Weintraub
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| | - Kolbjørn Brønnick
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| | - Alexander Lebedev
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| | - Eric Westman
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| | - Dag Aarsland
- From the Department of Neurobiology, Care Sciences and Society (J.B.P., E.W.), and Centre for Alzheimer's Disease Research, Department of Neurobiology, Care Sciences and Society (D.A.), Karolinska Institutet, Stockholm; Centre for Molecular Medicine (P.S.), Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Psychiatry and Neurology (D.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia VA Medical Center; and The Norwegian Center for Movement Disorders (K.B.), and Centre for Age-Related Medicine, Department of Psychiatry (A.L., D.A.), Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
41
|
Shao N, Yang J, Li J, Shang HF. Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Front Hum Neurosci 2014; 8:63. [PMID: 24600372 PMCID: PMC3927227 DOI: 10.3389/fnhum.2014.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023] Open
Abstract
Numerous voxel-based morphometry (VBM) studies on gray matter (GM) of patients with progressive supranuclear palsy (PSP) and Parkinson's disease (PD) have been conducted separately. Identifying the different neuroanatomical changes in GM resulting from PSP and PD through meta-analysis will aid the differential diagnosis of PSP and PD. In this study, a systematic review of VBM studies of patients with PSP and PD relative to healthy control (HC) in the Embase and PubMed databases from January 1995 to April 2013 was conducted. The anatomical distribution of the coordinates of GM differences was meta-analyzed using anatomical likelihood estimation. Separate maps of GM changes were constructed and subtraction meta-analysis was performed to explore the differences in GM abnormalities between PSP and PD. Nine PSP studies and 24 PD studies were included. GM reductions were present in the bilateral thalamus, basal ganglia, midbrain, insular cortex and inferior frontal gyrus, and left precentral gyrus and anterior cingulate gyrus in PSP. Atrophy of GM was concentrated in the bilateral middle and inferior frontal gyrus, precuneus, left precentral gyrus, middle temporal gyrus, right superior parietal lobule, and right cuneus in PD. Subtraction meta-analysis indicated that GM volume was lesser in the bilateral midbrain, thalamus, and insula in PSP compared with that in PD. Our meta-analysis indicated that PSP and PD shared a similar distribution of neuroanatomical changes in the frontal lobe, including inferior frontal gyrus and precentral gyrus, and that atrophy of the midbrain, thalamus, and insula are neuroanatomical markers for differentiating PSP from PD.
Collapse
Affiliation(s)
- Na Shao
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Jianpeng Li
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
42
|
Huang C, Ravdin LD, Nirenberg MJ, Piboolnurak P, Severt L, Maniscalco JS, Solnes L, Dorfman BJ, Henchcliffe C. Neuroimaging markers of motor and nonmotor features of Parkinson's disease: an 18f fluorodeoxyglucose positron emission computed tomography study. Dement Geriatr Cogn Disord 2013; 35:183-96. [PMID: 23445555 DOI: 10.1159/000345987] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 01/21/2023] Open
Abstract
AIM We sought to identify markers of motor and nonmotor function in Parkinson's disease (PD) using advanced neuroimaging techniques in subjects with PD. METHODS We enrolled 26 nondemented PD subjects and 12 control subjects. All subjects underwent [(18)F]fluorodeoxyglucose positron emission computed tomography (FDG-PET) and magnetic resonance imaging, and a complete neuropsychological battery. RESULTS FDG-PET of subjects with PD revealed significant metabolic elevations in the bilateral posterior lentiform nucleus, posterior cingulate, and parahippocampus, and metabolic reductions in the bilateral temporoparietal association cortex and occipital lobe versus controls. PD subjects had significant reductions in executive/attention function, memory/verbal learning, and speed of thinking, and significantly increased depression, anxiety and apathy scores compared with controls. Motor dysfunction correlated with increased metabolism in the posterior lentiform nucleus, pons, and cerebellum, and decreased metabolism in the temporoparietal lobe. Cognitive dysfunction correlated with increased posterior cingulate metabolism and decreased temporoparietal lobe metabolism. Depressive symptoms correlated with increased amygdala metabolism; anxiety scores correlated with decreased caudate metabolism, and apathy scores correlated with increased metabolism in the anterior cingulate and orbitofrontal lobe and decreased metabolism in the temporoparietal association cortex. CONCLUSIONS Our findings showed that motor, cognitive, and emotional dysfunction in PD are associated with distinct patterns of cerebral metabolic changes.
Collapse
Affiliation(s)
- Chaorui Huang
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10021, USA. chh2019 @ med.cornell.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Compta Y, Parkkinen L, Kempster P, Selikhova M, Lashley T, Holton JL, Lees AJ, Revesz T. The significance of α-synuclein, amyloid-β and tau pathologies in Parkinson's disease progression and related dementia. NEURODEGENER DIS 2013; 13:154-6. [PMID: 24028925 PMCID: PMC4194631 DOI: 10.1159/000354670] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dementia is one of the milestones of advanced Parkinson's disease (PD), with its neuropathological substrate still being a matter of debate, particularly regarding its potential mechanistic implications. OBJECTIVE The aim of this study was to review the relative importance of Lewy-related α-synuclein and Alzheimer's tau and amyloid-β (Aβ) pathologies in disease progression and dementia in PD. METHODS We reviewed studies conducted at the Queen Square Brain Bank, Institute of Neurology, University College London, using large PD cohorts. RESULTS Cortical Lewy- and Alzheimer-type pathologies are associated with milestones of poorer prognosis and with non-tremor predominance, which have been, in turn, linked to dementia. The combination of these pathologies is the most robust neuropathological substrate of PD-related dementia, with cortical Aβ burden determining a faster progression to dementia. CONCLUSION The shared relevance of these pathologies in PD progression and dementia is in line with experimental data suggesting synergism between α-synuclein, tau and Aβ and with studies testing these proteins as disease biomarkers, hence favouring the eventual testing of therapeutic strategies targeting these proteins in PD.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Combined dementia-risk biomarkers in Parkinson's disease: A prospective longitudinal study. Parkinsonism Relat Disord 2013; 19:717-24. [DOI: 10.1016/j.parkreldis.2013.03.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/20/2022]
|
45
|
Zarei M, Ibarretxe-Bilbao N, Compta Y, Hough M, Junque C, Bargallo N, Tolosa E, Martí MJ. Cortical thinning is associated with disease stages and dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 2013; 84:875-81. [PMID: 23463873 PMCID: PMC3717586 DOI: 10.1136/jnnp-2012-304126] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the pattern of cortical thinning in Parkinson's disease (PD) across different disease stages and to elucidate to what extent cortical thinning is related to cognitive impairment. DESIGN Ninety-six subjects including 39 controls and 57 PD patients participated in this study. PD subjects were divided into three groups (early, n=24; moderate, n=18; with dementia, n=15). High field structural brain MRI images were acquired in a 3T scanner and analyses of cortical thickness and surface were carried out. Vertex-wise group comparisons were performed and cortical thickness was correlated with motor and cognitive measures. RESULTS We found a positive correlation between Mini-Mental State Examination scores and cortical thickness in the anterior temporal, dorsolateral prefrontal, posterior cingulate, temporal fusiform and occipitotemporal cortex. Unified Parkinson's Disease Rating Scale-III (motor subsection) scores showed a robust negative correlation with caudate volumes. We found that disease stage in PD was associated with thinning of the medial frontal (premotor and supplementary motor cortex), posterior cingulate, precuneus, lateral occipital, temporal and dorsolateral prefrontal cortex. Discriminant analysis and a receiver operating characteristics approach showed that mean cortical thickness and hippocampus volume have 80% accuracy in identifying PD patients with dementia. PD stage and PD dementia can be characterised by a specific pattern of cortical thinning. CONCLUSIONS We conclude that measuring cortical thickness can be useful in assessing disease stage and cognitive impairment in patients with PD. In addition, cortical thickness may be useful in identifying dementia in PD.
Collapse
Affiliation(s)
- Mojtaba Zarei
- Department of Neurology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Parkinson's disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 2013; 14:626-36. [PMID: 23900411 DOI: 10.1038/nrn3549] [Citation(s) in RCA: 639] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementia is increasingly being recognized in cases of Parkinson's disease (PD); such cases are termed PD dementia (PDD). The spread of fibrillar α-synuclein (α-syn) pathology from the brainstem to limbic and neocortical structures seems to be the strongest neuropathological correlate of emerging dementia in PD. In addition, up to 50% of patients with PDD also develop sufficient numbers of amyloid-β plaques and tau-containing neurofibrillary tangles for a secondary diagnosis of Alzheimer's disease, and these pathologies may act synergistically with α-syn pathology to confer a worse prognosis. An understanding of the relationships between these three distinct pathologies and their resultant clinical phenotypes is crucial for the development of effective disease-modifying treatments for PD and PDD.
Collapse
|
47
|
Duncan GW, Firbank MJ, O'Brien JT, Burn DJ. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson's disease? Mov Disord 2013; 28:425-38. [PMID: 23450518 DOI: 10.1002/mds.25352] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/04/2012] [Accepted: 12/16/2012] [Indexed: 11/10/2022] Open
Abstract
Dementia is a frequent and disabling complication of Parkinson's disease (PD). Clinicians and researchers lack a biomarker capable of tracking the structural and functional changes that underlie the evolution of cognitive dysfunction in PD. Magnetic resonance imaging (MRI) has been adopted as a biomarker in natural history and interventional studies of Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), but its utility as a biomarker for PD and Parkinson's disease dementia (PDD) is unclear. In this review, the authors summarize the studies that have used MRI to investigate cognitive decline in PD, outline limitations of those studies, and suggest directions for future research. PD dementia is associated with extensive cortical atrophy, which may be quantified with structural MRI. More promisingly, patterns of atrophy may be present in those who have PD with MCI (PD-MCI). Subcortical white matter tract degeneration is detectable early in the disease with diffusion tensor imaging and may precede changes observed on conventional structural MRI. Although less well studied, other MR techniques, such as functional MRI, MR perfusion imaging with arterial spin labeling, and MR spectroscopy, have demonstrated differences in activation and metabolism between PD and PDD. In this review, the ability to compare studies was limited by the heterogeneity of study populations, cognitive testing methods, and imaging protocols. Future work should adopt agreed scan protocols, should be adequately powered, and should use carefully phenotyped patients to fully maximize the contribution of MRI as a biomarker for PDD.
Collapse
Affiliation(s)
- Gordon W Duncan
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Gray matter atrophy in Parkinson’s disease with dementia: evidence from meta-analysis of voxel-based morphometry studies. Neurol Sci 2012. [DOI: 10.1007/s10072-012-1250-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|