1
|
O'Connor S, Hevey D, Burke T, Rafee S, Pender N, O'Keeffe F. A Systematic Review of Cognition in Cervical Dystonia. Neuropsychol Rev 2024; 34:134-154. [PMID: 36696021 PMCID: PMC10920436 DOI: 10.1007/s11065-022-09558-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 04/17/2022] [Accepted: 06/10/2022] [Indexed: 01/26/2023]
Abstract
Growing evidence points to a spectrum of non-motor symptoms, including cognitive difficulties that have a greater impact on functional outcomes and quality of life than motor symptoms in cervical dystonia (CD). Some cognitive impairments have been reported; however, findings are inconsistent, and described across mixed groups of dystonia. The current review aimed to examine the evidence for cognitive impairments in CD. MEDLINE, EMBASE, PsychINFO and Web of Science databases were searched. Studies were included if they met the following criteria (i) cross-sectional or longitudinal studies of adults with CD, (ii) where the results of standardised measures of cognitive or neuropsychological function in any form were assessed and reported, (iii) results compared to a control group or normative data, and (iv) were published in English. Results are presented in a narrative synthesis. Twenty studies were included. Subtle difficulties with general intellectual functioning, processing speed, verbal memory, visual memory, visuospatial function, executive function, and social cognition were identified while language, and attention and working memory appear to be relatively spared. Several methodological limitations were identified that should be considered when interpreting the evidence to describe a specific profile of cognitive impairment in CD. Clinical and research implications are discussed.
Collapse
Affiliation(s)
- Sarah O'Connor
- Department of Clinical Psychology, School of Psychology, Aras an Phiarsaigh, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - David Hevey
- Department of Clinical Psychology, School of Psychology, Aras an Phiarsaigh, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Tom Burke
- Department of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Shameer Rafee
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine & Health Science, University College Dublin, Dublin, Ireland
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fiadhnait O'Keeffe
- Department of Clinical Psychology, School of Psychology, Aras an Phiarsaigh, Trinity College Dublin, Dublin 2, Dublin, Ireland
- Department of Psychology, St Vincent's University Hospital, Dublin, Ireland
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Surgical Outcomes in Rare Movement Disorders: A Report of Seventeen Patients from India and Review of Literature. Tremor Other Hyperkinet Mov (N Y) 2022; 12:22. [PMID: 35811746 PMCID: PMC9231568 DOI: 10.5334/tohm.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Rare movement disorders (RMDs) throw remarkable challenges to their appropriate management particularly when they are medically refractory. We studied the outcome of functional neurosurgery among patients with RMDs. Methods: Retrospective chart-review from 2006 to 2021 of patients with RMDs who underwent either Deep brain Stimulation (DBS) or lesional surgeries in the department of Neurology and Neurosurgery at a tertiary care centre. Results: Seventeen patients were included. Generalized dystonia (11 patients, 64.7%) and tremor (5 patients, 29.4%) were the most common indication for surgery whereas, Wilson’s disease (8 patients, 47.1%) and Neurodegeneration with brain iron accumulation (5 patients, 29.4%) were the most common aetiology. Sixteen patients (94.1%) had objective clinical improvement. Significant improvement was noted in the dystonia motor scores both at 6-months and 12-months follow-up (n = 11, p-value of <0.01 and 0.01 respectively). Comparison between DBS and lesional surgery showed no significant difference in the outcomes (p = 0.95 at 6-months and p = 0.53 at 12-months), with slight worsening of scores in the DBS arm at 12-months. Among five patients of refractory tremor with Wilson’s disease, there was remarkable improvement in the tremor scores by 85.0 ± 7.8% at the last follow-up. Speech impairment was the main complication observed with most of the other adverse events either transient or reversible. Discussion: Surgical options should be contemplated among patients with disabling medically refractory RMDs irrespective of the aetiology. Key to success lies in appropriate patient selection. In situations when DBS is not feasible, lesional surgeries can offer an excellent alternative with comparable efficacy and safety.
Collapse
|
4
|
Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15:757579. [PMID: 34899219 PMCID: PMC8663760 DOI: 10.3389/fnhum.2021.757579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question. Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology. Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145. Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3–49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05). Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
6
|
Tsuboi T, Wong JK, Almeida L, Hess CW, Wagle Shukla A, Foote KD, Okun MS, Ramirez-Zamora A. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020; 267:1278-1290. [DOI: 10.1007/s00415-020-09703-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
|
7
|
Stavrinou LC, Liouta E, Boviatsis EJ, Leonardos A, Gatzonis S, Stathis P, Sakas DE, Angelakis E. Effect of constant-current pallidal deep brain stimulation for primary dystonia on cognition, mood and quality of life: Results from a prospective pilot trial. Clin Neurol Neurosurg 2019; 185:105460. [DOI: 10.1016/j.clineuro.2019.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023]
|
8
|
Cernera S, Okun MS, Gunduz A. A Review of Cognitive Outcomes Across Movement Disorder Patients Undergoing Deep Brain Stimulation. Front Neurol 2019; 10:419. [PMID: 31133956 PMCID: PMC6514131 DOI: 10.3389/fneur.2019.00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Although the benefit in motor symptoms for well-selected patients with deep brain stimulation (DBS) has been established, cognitive declines associated with DBS can produce suboptimal clinical responses. Small decrements in cognition can lead to profound effects on quality of life. The growth of indications, the expansion of surgical targets, the increasing complexity of devices, and recent changes in stimulation paradigms have all collectively drawn attention to the need for re-evaluation of DBS related cognitive outcomes. Methods: To address the impact of cognitive changes following DBS, we performed a literature review using PubMed. We searched for articles focused on DBS and cognition. We extracted information about the disease, target, number of patients, assessment of time points, cognitive battery, and clinical outcomes. Diseases included were dystonia, Tourette syndrome (TS), essential tremor (ET), and Parkinson's disease (PD). Results: DBS was associated with mild cognitive issues even when rigorous patient selection was employed. Dystonia studies reported stable or improved cognitive scores, however one study using reliable change indices indicated decrements in sustained attention. Additionally, DBS outcomes were convoluted with changes in medication dose, alleviation of motor symptoms, and learning effects. In the largest, prospective TS study, an improvement in attentional skills was noted, whereas smaller studies reported variable declines across several cognitive domains. Although, most studies reported stable cognitive outcomes. ET studies largely demonstrated deficits in verbal fluency, which had variable responses depending on stimulation setting. Recently, studies have focused beyond the ventral intermediate nucleus, including the post-subthalamic area and zona incerta. For PD, the cognitive results were heterogeneous, although deficits in verbal fluency were consistent and related to the micro-lesion effect. Conclusion: Post-DBS cognitive issues can impact both motor and quality of life outcomes. The underlying pathophysiology of cognitive changes post-DBS and the identification of pathways underpinning declines will require further investigation. Future studies should employ careful methodological designs. Patient specific analyses will be helpful to differentiate the effects of medications, DBS and the underlying disease state, including disease progression. Disease progression is often an underappreciated factor that is important to post-DBS cognitive issues.
Collapse
Affiliation(s)
- Stephanie Cernera
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
9
|
Abstract
BACKGROUND Dystonia is a painful and disabling disorder, characterised by painful, involuntary posturing of the affected body region(s). Deep brain stimulation is an intervention typically reserved for severe and drug-refractory cases, although uncertainty exists regarding its efficacy, safety, and tolerability. OBJECTIVES To compare the efficacy, safety, and tolerability of deep brain stimulation (DBS) versus placebo, sham intervention, or best medical care, including botulinum toxin and resective or lesional surgery, in adults with dystonia. SEARCH METHODS We identified studies by searching the CENTRAL, MEDLINE, Embase, three other databases, four clinical trial registries, four grey literature databases, and reference lists of included articles. We ran the last search of all elements of the search strategy, with no language restrictions, on 29 May 2018. SELECTION CRITERIA Double-blind, parallel, randomised, controlled trials (RCTs) comparing DBS with sham stimulation, best medical care, or placebo in adults with dystonia. DATA COLLECTION AND ANALYSIS Two independent review authors assessed records, selected included studies, extracted data onto a standardised (or prespecified) data extraction form, and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third review author. We conducted meta-analyses using a random-effects model, to estimate pooled effects and corresponding 95% confidence intervals (95% CI). We assessed the quality of the evidence with GRADE methods. The primary efficacy outcome was symptom improvement on any validated symptomatic rating scale, and the primary safety outcome was adverse events. MAIN RESULTS We included two RCTs, enrolling a total of 102 participants. Both trials evaluated the effect of DBS on the internal globus pallidus nucleus, and assessed outcomes after three and six months of stimulation. One of the studies included participants with generalised and segmental dystonia; the other included participants with focal (cervical) dystonia. We assessed both studies at high risk for performance and for-profit bias. One study was retrospectively registered with a clinical trial register, we judged the second at high risk of detection bias.Low-quality evidence suggests that DBS of the internal globus pallidus nucleus may improve overall cervical dystonia-related symptoms (mean difference (MD) 9.8 units, 95% CI 3.52 to 16.08 units; 1 RCT, 59 participants), cervical dystonia-related functional capacity (MD 3.8 units, 95% CI 1.41 to 6.19; 1 RCT, 61 participants), and mood at three months (MD 3.1 units, 95% CI 0.73 to 5.47; 1 RCT, 61 participants).Low-quality evidence suggests that In people with cervical dystonia, DBS may slightly improve the overall clinical status (MD 2.3 units, 95% CI 1.15 to 3.45; 1 RCT, 61 participants). We are uncertain whether DBS improves quality of life in cervical dystonia (MD 3 units, 95% CI -7.71 to 13.71; 1 RCT, 57 participants; very low-quality evidence), or emotional state (MD 2.4 units, 95% CI -6.2 to 11.00; 1 RCT, 56 participants; very low-quality evidence).Low-quality evidence suggests that DBS of the internal globus pallidus nucleus may improve generalised or segmental dystonia-related symptoms (MD 14.4 units, 95% CI 8.0 to 20.8; 1 RCT, 40 participants), overall clinical status (MD 3.5 units, 95% CI 2.33 to 4.67; 1 RCT, 37 participants), physical functioning-related quality of life (MD 6.3 units, 95% CI 1.06 to 11.54; 1 RCT, 33 participants), and overall dystonia-related functional capacity at three months (MD 3.1 units, 95% CI 1.71 to 4.48; 1 RCT, 39 participants). We are uncertain whether DBS improves physical functioning-related quality of life (MD 5.0 units, 95% CI -2.14 to 12.14, 1 RCT, 33 participants; very low-quality evidence), or mental health-related quality of life (MD -4.6 units, 95% CI -11.26 to 2.06; 1 RCT, 30 participants; very low-quality evidence) in generalised or segmental dystonia.We pooled outcomes related to safety and tolerability, since both trials used the same intervention and comparison. We found very low-quality evidence of inconclusive results for risk of adverse events (relative risk (RR) 1.58, 95% 0.98 to 2.54; 2 RCTs, 102 participants), and tolerability (RR 1.86, 95% CI 0.16 to 21.57; 2 RCTs,102 participants). AUTHORS' CONCLUSIONS DBS of the internal globus pallidus nucleus may reduce symptom severity and improve functional capacity in adults with cervical, segmental or generalised moderate to severe dystonia (low-quality evidence), and may improve quality of life in adults with generalised or segmental dystonia (low-quality evidence). We are uncertain whether the procedure improves quality of life in cervical dystonia (very low-quality evidence). We are also uncertain about the safety and tolerability of the procedure in adults with either cervical and generalised, or segmental dystonia (very-low quality evidence).We could draw no conclusions for other populations with dystonia (i.e. children and adolescents, and adults with other types of dystonia), or for other DBS protocols (i.e. other target nuclei or stimulation paradigms). Further research is needed to establish the long-term efficacy and safety of DBS of the internal globus pallidus nucleus.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal, 1649-028
| | | | | | | | | |
Collapse
|
10
|
Eggink H, Szlufik S, Coenen MA, van Egmond ME, Moro E, Tijssen MA. Non-motor effects of deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2018; 55:26-44. [PMID: 29945825 DOI: 10.1016/j.parkreldis.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
11
|
Huh R, Song IU, Chung M. Neuropsychological consequences of pallidal deep brain stimulation altering brain networks. J Clin Neurosci 2018; 54:50-56. [DOI: 10.1016/j.jocn.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
|
12
|
Cury RG, Kalia SK, Shah BB, Jimenez-Shahed J, Prashanth LK, Moro E. Surgical treatment of dystonia. Expert Rev Neurother 2018; 18:477-492. [PMID: 29781334 DOI: 10.1080/14737175.2018.1478288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Treatment of dystonia should be individualized and tailored to the specific needs of patients. Surgical treatment is an important option in medically refractory cases. Several issues regarding type of the surgical intervention, targets, and predict factors of benefit are still under debate. Areas covered: To date, several clinical trials have proven the benefit and safety of deep brain stimulation (DBS) for inherited and idiopathic isolated dystonia, whereas there is still insufficient evidence in combined and acquired dystonia. The globus pallidus internus (GPi) is the target with the best evidence, but data on the subthalamic nucleus seems also to be promising. Evidence suggests that younger patients with shorter disease duration experience greater benefit following DBS. Pallidotomy and thalamotomy are currently used in subset of carefully selected patients. The development of MRI-guided focused ultrasound might bring new options to ablation approach in dystonia. Expert commentary: GPi-DBS is effective and safe in isolated dystonia and should not be delayed when symptoms compromise quality of life and functionality. Identifying the best candidates to surgery on acquired and combined dystonias is still necessary. New insights about pathophysiology of dystonia and new technological advances will undoubtedly help to tailor surgery and optimize clinical effects.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France.,b Department of Neurology, School of Medicine , University of São Paulo , São Paulo , Brazil
| | - Suneil Kumar Kalia
- c Division of Neurosurgery and Krembil Research Institute, Department of Surgery , University of Toronto , Toronto , Canada
| | - Binit Bipin Shah
- d Parkinson's Disease and Movement Disorders Center, Department of Neurology , University of Virginia , Charlottesville , VA , USA
| | - Joohi Jimenez-Shahed
- e Parkinson's Disease Center and Movement Disorders Clinic , Baylor College of Medicine , Houston , TX , USA
| | | | - Elena Moro
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
13
|
Mole JA, Prangnell SJ. Role of clinical neuropsychology in deep brain stimulation: Review of the literature and considerations for clinicians. APPLIED NEUROPSYCHOLOGY-ADULT 2017; 26:283-296. [PMID: 29236528 DOI: 10.1080/23279095.2017.1407765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deep Brain Stimulation (DBS) is an effective surgical therapy for several neurological movement disorders. The clinical neuropsychologist has a well-established role in the neuropsychological evaluation and selection of surgical candidates. In this article, we argue that the clinical neuropsychologist's role is much broader, when considered in relation to applied psychologists' core competencies. We consider the role of the clinical neuropsychologist in DBS in relation to: assessment, formulation, evaluation and research, intervention or implementation, and communication. For each competence the relevant evidence-base was reviewed. Clinical neuropsychology has a vital role in presurgical assessment of cognitive functioning and psychological, and emotional and behavioral difficulties. Formulation is central to the selection of surgical candidates and crucial to intervention planning. Clinical neuropsychology has a well-established role in postsurgical assessment of cognitive functioning and psychological, emotional, and behavioral outcomes, which is fundamental to evaluation on an individual and service level. The unique contribution clinical neuropsychology makes to pre- and postsurgical interventions is also highlighted. Finally, we discuss how clinical neuropsychology can promote clear and effective communication with patients and between professionals.
Collapse
Affiliation(s)
- Joseph A Mole
- a Russell Cairns Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Simon J Prangnell
- a Russell Cairns Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| |
Collapse
|
14
|
Jahanshahi M. Neuropsychological and Neuropsychiatric Features of Idiopathic and DYT1 Dystonia and the Impact of Medical and Surgical treatment. Arch Clin Neuropsychol 2017; 32:888-905. [DOI: 10.1093/arclin/acx095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/14/2022] Open
|
15
|
Li X, Li S, Pu B, Hua C. Comparison of 2 Operative Methods for Treating Laterocollis and Torticollis Subtypes of Spasmodic Torticollis: Follow-Up of 121 Cases. World Neurosurg 2017; 108:636-641. [PMID: 28939542 DOI: 10.1016/j.wneu.2017.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects and complications of microvascular decompression (MVD) and neurectomy of spinal accessory nerve in the treatment of laterocollis and torticollis subtypes spasmodic torticollis (ST). METHODS Clinical data were retrospectively collected from 121 patients with laterocollis and torticollis subtypes of ST from January 1, 2012 to January 1, 2016. Among all the patients, 80 were treated by MVD and 41 were treated by neurectomy of spinal accessory nerve. The effect of the surgery was evaluated by the reduction in the Toronto Western spasmodic torticollis rating scale total scores before and after the operation. The mean duration of the postoperative follow-up period was 18.7 months (range, 12-27 months). RESULTS At the final follow-up, the Toronto Western spasmodic torticollis rating scale total score in the MVD group and in the neurectomy group was lowered by 50.43% ± 20.3% and 30.23% ± 19.4%, respectively, compared with the preoperative status (P < 0.05). In the MVD group, 25 (31.25%) patients achieved excellent relief, 44 (55%) patients improved moderate spasm, and 11 (13.75%) showed no relief. In the neurectomy group, 6 (14.63%) patients improved with excellent outcome, 7 (17.07%) had moderate relief, and 28 (68.29%) had no relief. There was no mortality or severe complication postoperatively, with the exception of hoarseness, shoulder numbness, and weakness. CONCLUSIONS MVD for ST of laterocollis and torticollis subtypes can provide satisfactory and lasting improvements without nerve impairment. MVD is to be preferred to neurectomy of accessory nerve in treating ST of laterocollis and torticollis subtypes.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Shiting Li
- Department of Neurosurgery, Shanghai Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Benfang Pu
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chunhui Hua
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Reese R, Volkmann J. Deep Brain Stimulation for the Dystonias: Evidence, Knowledge Gaps, and Practical Considerations. Mov Disord Clin Pract 2017; 4:486-494. [PMID: 30363085 PMCID: PMC6090587 DOI: 10.1002/mdc3.12519] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus (GPi-DBS) is among the most effective treatment options for dystonias. Because the term "dystonia" is defined by a characteristic phenomenology of involuntary muscle contractions, which may present with a large clinical and pathogenetic heterogeneity, decision making for or against GPi-DBS can be difficult in individual patients. METHODS A search of the PubMed database for research and review articles, focused on "deep brain stimulation" and "dystonia" was used to identify clinical trials and to determine current concepts in the surgical management of dystonia. Patient selection in previous studies was recategorized by the authors using the new dystonia classification put forward by a consensus committee of experts in dystonia research. The evidence and knowledge gaps are summarized and commented by the authors taking into account expert opinion and personal clinical experience for providing practical guidance in patient selection for DBS in dystonia. RESULTS The literature review shows that pallidal deep brain stimulation is most effective in patients with isolated dystonia irrespective of the underlying etiology. In contrast, patients with combined dystonias are less likely to benefit from DBS, because the associated neurological symptoms (e.g., hypotonia or ataxia), with the exception of myoclonus, do not respond to pallidal neurostimulation. CONCLUSIONS It is important to recognize the clinical features of dystonia, because the distinction between isolated and combined dystonia syndromes may predict the treatment response to pallidal deep brain stimulation. The aim of this review is to help guide clinicians with advising patients about deep brain stimulation therapy for dystonia and refering appropriate candidates to surgical centers.
Collapse
Affiliation(s)
- René Reese
- Department of NeurologyRostock University Medical CenterRostockGermany
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Jens Volkmann
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
17
|
Jahanshahi M, Torkamani M. The cognitive features of idiopathic and DYT1 dystonia. Mov Disord 2017. [DOI: 10.1002/mds.27048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| | - Mariam Torkamani
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| |
Collapse
|
18
|
de Gusmao CM, Pollak LE, Sharma N. Neuropsychological and psychiatric outcome of GPi-deep brain stimulation in dystonia. Brain Stimul 2017. [PMID: 28647175 DOI: 10.1016/j.brs.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous investigators have observed changes in cognitive and psychiatric domains after GPi-DBS for dystonia, such as declines in semantic verbal fluency and set shifting or increased suicidality. Others have reported stability or improvements in select areas, such as graphomotor speed and mood. Interpretation of these findings is limited by inclusion of select patient populations or limited neuropsychological testing. OBJECTIVE To describe cognitive and neuropsychiatric outcomes in a cohort of patients with primary and secondary dystonia undergoing Globus Pallidus pars interna deep brain stimulation (GPi-DBS). METHODS Patients with primary and secondary dystonia were evaluated at baseline and post-operatively with a comprehensive battery of neuropsychological tests and mood inventories including anxiety, depression and hopelessness scales. Statistical significance was calculated with one-tailed student t-test, defined as p value < 0.05. RESULTS Twelve patients were included in the study. Nine were male (75%) and the mean age at baseline assessment was 42.3 years (range 13-68; SD 18.0). The majority had focal or segmental dystonia (8/12, 66%), 4 patients had generalized dystonia. Three patients had monogenic dystonias (DYT 1 and DYT 3), and two patients had acquired (tardive) dystonia. Mean time between surgery and follow-up was 13.1 months (SD 3.1). Subjects demonstrated stable performance on most tests, with statistically significant improvements noted in working memory (letter-number sequencing), executive function (trail-making B), anxiety and depression. CONCLUSIONS In an etiologically and clinically diverse patient population, administration of comprehensive battery of cognitive tests pre and post-operatively suggests that GPi-DBS is safe from cognitive and psychiatric perspectives.
Collapse
Affiliation(s)
| | - Lauren E Pollak
- Department of Psychiatry, Massachusetts General Hospital, 02114, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, 02114, USA
| |
Collapse
|
19
|
Campbell AM, Davalos DB. Levels of attention and task difficulty in the modulation of interval duration mismatch negativity. Front Psychol 2015; 6:1619. [PMID: 26579010 PMCID: PMC4621395 DOI: 10.3389/fpsyg.2015.01619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/07/2015] [Indexed: 11/13/2022] Open
Abstract
Time perception has been described as a fundamental skill needed to engage in a number of higher level cognitive processes essential to successfully navigate everyday life (e.g., planning, sequencing, etc.) Temporal processing is often thought of as a basic neural process that impacts a variety of other cognitive processes. Others, however, have argued that timing in the brain can be affected by a number of variables such as attention and motivation. In an effort to better understand timing in the brain at a basic level with minimal attentional demands, researchers have often employed use of the mismatch negativity (MMN). MMN, specifically duration MMN (dMMN) and interval MMN (iMMN) have been popular methods for studying temporal processing in populations for which attention or motivation may be an issue (e.g., clinical populations, early developmental studies). There are, however, select studies which suggest that attention may in fact modify both temporal processing in general and the MMN event-related potential. It is unclear the degree to which attention affects MMN or whether the effects differ depending on the complexity or difficulty of the MMN paradigm. The iMMN indexes temporal processing and is elicited by introducing a deviant interval duration amid a series of standards. A greater degree of difference in the deviant from the standard elicits a heightened iMMN. Unlike past studies, in which attention was intentionally directed toward a closed-captioned move, the current study had participants partake in tasks involving varying degrees of attention (passive, low, and high) with varying degrees of deviants (small, medium, and large) to better understand the role of attention on the iMMN and to assess whether level of attention paired with changes in task difficulty differentially influence the iMMN electrophysiological responses. Data from 19 subjects were recorded in an iMMN paradigm. The amplitude of the iMMN waveform showed an increase with attention, particularly for intervals that were the most distinct from a standard interval (p < 0.02). Results suggest that the role of attention on the iMMN is complex. Both the degree of attention paid as well as the level of difficulty of the MMN task likely influence the neuronal response within a timing network. These results suggest that electrophysiological perception of time is modified by attention and that the design of the iMMN study is critical to minimize the possible confounding effects of attention. In addition, the implications of these results for future studies assessing interval duration-based MMN in clinical populations is also addressed.
Collapse
Affiliation(s)
- Alana M. Campbell
- Department of Psychiatry and the UNC Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deana B. Davalos
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|