1
|
St George RJ, Day BL, Butler AA, Fitzpatrick RC. Stepping in circles: how locomotor signals of rotation adapt over time. J Physiol 2020; 598:2125-2136. [PMID: 32133628 DOI: 10.1113/jp279171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While it has been well described that prolonged rotational stepping will adapt the podokinetic sense of rotation, the mechanisms involved are not clearly understood. By studying podokinetic after-rotations following conditioning rotations not previously reported we have shown that slower rotational velocities are more readily adapted than faster velocities and adaptation occurs more quickly than previously thought. We propose a dynamic feedback model of vestibular and podokinetic adaptation that can fit rotation trajectories across multiple conditions and data sets. Two adaptation processes were identified that may reflect central and peripheral processes and the discussion unifies prior findings in the podokinetic literature under this new framework. The findings show the technique is feasible for people with locomotor turning problems. ABSTRACT After a prolonged period stepping in circles, people walk with a curved trajectory when attempting to walk in a straight line without vision. Podokinetic adaptation shows promise in clinical populations to improve locomotor turning; however, the adaptive mechanisms involved are poorly understood. The first phase of this study asks: how does the podokinetic conditioning velocity affect the response velocity and how quickly can adaptation occur? The second phase of the study asks: can a mathematical feedback model account for the rotation trajectories across different conditioning parameters and different datasets? Twelve healthy participants stepped in place on the axis of a rotating surface ranging from 4 to 20 deg s-1 for durations of 1-10 min, while using visual cues to maintain a constant heading direction. Afterward on solid ground, participants were blindfolded and attempted to step without rotating. Participants unknowingly stepped in circles opposite to the direction of the prior platform rotation for all conditions. The angular velocity of this response peaked within 1 min and the ratio of the stimulus-to-response peak velocity fitted a decreasing power function. The response then decayed exponentially. The feedback model of podokinetic and vestibular adaptive processes had a good fit with the data and suggested that podokinetic adaptation is explained by a short (141 s) and a long (27 min) time constant. The podokinetic system adapts more quickly than previously thought and subjects adapt more readily to slower rotation than to faster rotation. These findings will have implications for clinical applications of the technique.
Collapse
Affiliation(s)
- Rebecca J St George
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brian L Day
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Annie A Butler
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
2
|
Godi M, Giardini M, Nardone A, Turcato AM, Caligari M, Pisano F, Schieppati M. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson's Disease: A Proof of Concept. Front Neurol 2017; 8:53. [PMID: 28293213 PMCID: PMC5329030 DOI: 10.3389/fneur.2017.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking.
Collapse
Affiliation(s)
- Marco Godi
- Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno , Veruno , Italy
| | - Marica Giardini
- Department of Translational Medicine, University of Eastern Piedmont , Novara , Italy
| | - Antonio Nardone
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Laboratorio di Comunicazione e Domotica, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Veruno, Italy
| | - Anna Maria Turcato
- Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno , Veruno , Italy
| | - Marco Caligari
- Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Laboratorio di Comunicazione e Domotica, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno , Veruno , Italy
| | - Fabrizio Pisano
- Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Division of Neurological Rehabilitation, Scientific Institute of Veruno , Veruno , Italy
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri Spa SB, IRCCS, Centro Studi Attività Motorie, Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Stepping in Place While Voluntarily Turning Around Produces a Long-Lasting Posteffect Consisting in Inadvertent Turning While Stepping Eyes Closed. Neural Plast 2016; 2016:7123609. [PMID: 27635264 PMCID: PMC5011410 DOI: 10.1155/2016/7123609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/20/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022] Open
Abstract
Training subjects to step in place on a rotating platform while maintaining a fixed body orientation in space produces a posteffect consisting in inadvertent turning around while stepping in place eyes closed (podokinetic after-rotation, PKAR). We tested the hypothesis that voluntary turning around while stepping in place also produces a posteffect similar to PKAR. Sixteen subjects performed 12 min of voluntary turning while stepping around their vertical axis eyes closed and 12 min of stepping in place eyes open on the center of a platform rotating at 60°/s (pretests). Then, subjects continued stepping in place eyes closed for at least 10 min (posteffect). We recorded the positions of markers fixed to head, shoulder, and feet. The posteffect of voluntary turning shared all features of PKAR. Time decay of angular velocity, stepping cadence, head acceleration, and ratio of angular velocity after to angular velocity before were similar between both protocols. Both postrotations took place inadvertently. The posteffects are possibly dependent on the repeated voluntary contraction of leg and foot intrarotating pelvic muscles that rotate the trunk over the stance foot, a synergy common to both protocols. We propose that stepping in place and voluntary turning can be a scheme ancillary to the rotating platform for training body segment coordination in patients with impairment of turning synergies of various origin.
Collapse
|