1
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
2
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Schröter N, van Eimeren T, Classen J, Levin J, Redecker C, Wolz M, Tönges L. Significance of clinical symptoms and red flags in early differential diagnosis of Parkinson's disease and atypical Parkinsonian syndromes. J Neural Transm (Vienna) 2023; 130:839-846. [PMID: 37046147 PMCID: PMC10199882 DOI: 10.1007/s00702-023-02634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The clinical presentation of Parkinson's disease and atypical Parkinsonian syndromes is often heterogeneous. Additional diagnostic procedures including brain imaging and biomarker analyses can help to appreciate the various syndromes, but a precise clinical evaluation and differentiation is always necessary. To better assess the relevance of distinct clinical symptoms that arose within 1 year of disease manifestation and evaluate their indicative potential for an atypical Parkinsonian syndrome, we conducted a modified Delphi panel with seven movement disorder specialists. Five different topics with several clinical symptom items were discussed and consensus criteria were tested. This resulted in distinct symptom patterns for each atypical Parkinsonian syndrome showing the multitude of clinical involvement in each neurodegenerative disease. Strongly discriminating clinical signs were few and levels of indication were variable. A prospective validation of the assessments made is needed. This demonstrates that both clinical evaluation and elaborate additional diagnostic procedures are needed to achieve a high diagnostic standard.
Collapse
Affiliation(s)
- Nils Schröter
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Thilo van Eimeren
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Martin Wolz
- Department of Neurology, Elblandklinikum Meißen, Meissen, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Olfati N, Shoeibi A, Litvan I. Clinical Spectrum of Tauopathies. Front Neurol 2022; 13:944806. [PMID: 35911892 PMCID: PMC9329580 DOI: 10.3389/fneur.2022.944806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tauopathies are both clinical and pathological heterogeneous disorders characterized by neuronal and/or glial accumulation of misfolded tau protein. It is now well understood that every pathologic tauopathy may present with various clinical phenotypes based on the primary site of involvement and the spread and distribution of the pathology in the nervous system making clinicopathological correlation more and more challenging. The clinical spectrum of tauopathies includes syndromes with a strong association with an underlying primary tauopathy, including Richardson syndrome (RS), corticobasal syndrome (CBS), non-fluent agrammatic primary progressive aphasia (nfaPPA)/apraxia of speech, pure akinesia with gait freezing (PAGF), and behavioral variant frontotemporal dementia (bvFTD), or weak association with an underlying primary tauopathy, including Parkinsonian syndrome, late-onset cerebellar ataxia, primary lateral sclerosis, semantic variant PPA (svPPA), and amnestic syndrome. Here, we discuss clinical syndromes associated with various primary tauopathies and their distinguishing clinical features and new biomarkers becoming available to improve in vivo diagnosis. Although the typical phenotypic clinical presentations lead us to suspect specific underlying pathologies, it is still challenging to differentiate pathology accurately based on clinical findings due to large phenotypic overlaps. Larger pathology-confirmed studies to validate the use of different biomarkers and prospective longitudinal cohorts evaluating detailed clinical, biofluid, and imaging protocols in subjects presenting with heterogenous phenotypes reflecting a variety of suspected underlying pathologies are fundamental for a better understanding of the clinicopathological correlations.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| |
Collapse
|
5
|
Saeed M, Scott G, Murphy S. Teaching Video NeuroImage: Tongue Tremor as a Presenting Feature of Progressive Supranuclear Palsy. Neurology 2022; 98:642. [PMID: 35145003 DOI: 10.1212/wnl.0000000000200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mamoun Saeed
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.,Chelsea and Westminster Hospital, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Gregory Scott
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.,Chelsea and Westminster Hospital, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Stephen Murphy
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK .,Chelsea and Westminster Hospital, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Deuschl G, Becktepe JS, Dirkx M, Haubenberger D, Hassan A, Helmich R, Muthuraman M, Panyakaew P, Schwingenschuh P, Zeuner KE, Elble RJ. The clinical and electrophysiological investigation of tremor. Clin Neurophysiol 2022; 136:93-129. [DOI: 10.1016/j.clinph.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
|
7
|
Parkinsonism and tremor syndromes. J Neurol Sci 2021; 433:120018. [PMID: 34686357 DOI: 10.1016/j.jns.2021.120018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023]
Abstract
Tremor, the most common movement disorder, may occur in isolation or may co-exist with a variety of other neurologic and movement disorders including parkinsonism, dystonia, and ataxia. When associated with Parkinson's disease, tremor may be present at rest or as an action tremor overlapping in phenomenology with essential tremor. Essential tremor may be associated not only with parkinsonism but other neurological disorders, suggesting the possibility of essential tremor subtypes. Besides Parkinson's disease, tremor can be an important feature of other parkinsonian disorders, such as atypical parkinsonism and drug-induced parkinsonism. In addition, tremor can be a prominent feature in patients with other movement disorders such as fragile X-associated tremor/ataxia syndrome, and Wilson's disease in which parkinsonian features may be present. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
|
8
|
Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, Bloom L, Bower J, Boxer AL, Dale ML, Dhall R, Duquette A, Fernandez HH, Fleisher JE, Grossman M, Howell M, Kerwin DR, Leegwater-Kim J, Lepage C, Ljubenkov PA, Mancini M, McFarland NR, Moretti P, Myrick E, Patel P, Plummer LS, Rodriguez-Porcel F, Rojas J, Sidiropoulos C, Sklerov M, Sokol LL, Tuite PJ, VandeVrede L, Wilhelm J, Wills AMA, Xie T, Golbe LI. Best Practices in the Clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Consensus Statement of the CurePSP Centers of Care. Front Neurol 2021; 12:694872. [PMID: 34276544 PMCID: PMC8284317 DOI: 10.3389/fneur.2021.694872] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS; the most common phenotype of corticobasal degeneration) are tauopathies with a relentless course, usually starting in the mid-60s and leading to death after an average of 7 years. There is as yet no specific or disease-modifying treatment. Clinical deficits in PSP are numerous, involve the entire neuraxis, and present as several discrete phenotypes. They center on rigidity, bradykinesia, postural instability, gait freezing, supranuclear ocular motor impairment, dysarthria, dysphagia, incontinence, sleep disorders, frontal cognitive dysfunction, and a variety of behavioral changes. CBS presents with prominent and usually asymmetric dystonia, apraxia, myoclonus, pyramidal signs, and cortical sensory loss. The symptoms and deficits of PSP and CBS are amenable to a variety of treatment strategies but most physicians, including many neurologists, are reluctant to care for patients with these conditions because of unfamiliarity with their multiplicity of interacting symptoms and deficits. CurePSP, the organization devoted to support, research, and education for PSP and CBS, created its CurePSP Centers of Care network in North America in 2017 to improve patient access to clinical expertise and develop collaborations. The directors of the 25 centers have created this consensus document outlining best practices in the management of PSP and CBS. They formed a writing committee for each of 12 sub-topics. A 4-member Steering Committee collated and edited the contributions. The result was returned to the entire cohort of authors for further comments, which were considered for incorporation by the Steering Committee. The authors hope that this publication will serve as a convenient guide for all clinicians caring for patients with PSP and CBS and that it will improve care for patients with these devastating but manageable disorders.
Collapse
Affiliation(s)
- Brent Bluett
- Neurology, Pacific Central Coast Health Center, Dignity Health, San Luis Obispo, CA, United States
- Neurology, Stanford University, Stanford, CA, United States
| | - Alexander Y. Pantelyat
- Neurology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Irene Litvan
- Neurology, University of California, San Diego, San Diego, CA, United States
| | - Farwa Ali
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Diana Apetauerova
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Danny Bega
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lisa Bloom
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - James Bower
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Adam L. Boxer
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marian L. Dale
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Rohit Dhall
- Neurology, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Antoine Duquette
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Hubert H. Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jori E. Fleisher
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Murray Grossman
- Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Howell
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Diana R. Kerwin
- Geriatrics, Presbyterian Hospital of Dallas, Dallas, TX, United States
| | | | - Christiane Lepage
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Martina Mancini
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Nikolaus R. McFarland
- Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Paolo Moretti
- Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Erica Myrick
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Pritika Patel
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Laura S. Plummer
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Julio Rojas
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Miriam Sklerov
- Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leonard L. Sokol
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paul J. Tuite
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Lawren VandeVrede
- Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Wilhelm
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Anne-Marie A. Wills
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Tao Xie
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - Lawrence I. Golbe
- Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Evolving resting head tremor in parkinsonism: Clinicopathological study of a case. Parkinsonism Relat Disord 2021; 86:1-4. [PMID: 33780872 DOI: 10.1016/j.parkreldis.2021.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Resting limb tremor (RLT) is a well known feature in parkinsonism. There is very little information on resting head tremor (RHT) in parkinsonism, and none in pathologically confirmed cases. The association between RLT and RHT remains uncertain. METHODS A Caucasian male developed upper limb tremor and voice changes at age 70. He was first assessed at our clinic at age 72. At age 73 he developed resting head tremor (RHT) which prevented him from falling asleep. His status was documented in longitudinal follow-up at our clinic. He had a total of 14 clinical evaluations and four videos made over 6 years. Autopsy of the brain and spinal cord was performed. RESULTS The resting head tremor improved on antiparkinsonian drugs and resolved completely after four years. Coincident with RHT remission, the upper limb tremor worsened and interfered with feeding, and his lower limb resting tremor became more pronounced. During his course he developed slow, scanning speech and all the cardinal motor findings of parkinsonism. There was no ophthalmoplegia. Post-mortem neuropathological examination revealed prominent progressive supranuclear palsy (PSP) changes and minor Lewy body pathology. CONCLUSION This is the first autopsy confirmed case of parkinsonism with RHT. He had dual pathology. Dissociation between RHT and RLT indicates that the oscillatory brain centers for the two were different in this case.
Collapse
|
10
|
Morgan JC, Ye X, Mellor JA, Golden KJ, Zamudio J, Chiodo LA, Bao Y, Xie T. Disease course and treatment patterns in progressive supranuclear palsy: A real-world study. J Neurol Sci 2020; 421:117293. [PMID: 33385754 DOI: 10.1016/j.jns.2020.117293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disorder with symptoms including vertical gaze palsy, frequent falls, abnormal gait, and cognitive/language/behavioral changes, making diagnosis and treatment challenging. METHODS Descriptive analysis was undertaken of cross-sectional, real-world data for patients with PSP provided by neurologists in France, Germany, Italy, Spain, UK, and USA. RESULTS Data on 892 PSP patients were obtained from patient records. Common initial symptoms included difficulty walking/maintaining gait, confusion/disorientation, loss of balance/falling, and rigidity. These symptoms and vertical gaze palsy commonly aided diagnosis. At data collection, dysphagia and blepharospasm were also very common. Mean times from symptom-onset to consulting a healthcare professional and PSP diagnosis were 5.2 and 15.0 months, respectively. General practitioners or movement disorder specialists were most commonly consulted initially; 98% of patients were diagnosed with PSP by a movement disorder specialist or general neurologist. Alternative diagnoses, including Parkinson's disease (67%) and dementia (10%), were considered for 41% of patients prior to PSP diagnosis. Non-wheelchair walking aids and wheelchairs were used by 60% and 23% of patients, respectively, with mean times from symptom-onset to use being 20.8 and 39.5 months, respectively. Symptomatic medication, most often levodopa and antidepressants, was prescribed for 87% of patients. CONCLUSION This study provided information on disease course and treatment for a large number of PSP patients from various countries. PSP carries a considerable clinical burden. Diagnosis is often delayed. Consulting a movement disorder specialist might expediate diagnosis. Currently, only symptomatic treatments are available with a poor satisfaction, and there is an urgent need for disease-modifying agents.
Collapse
Affiliation(s)
- John C Morgan
- Movement & Memory Disorders Program, Parkinson Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | | | | | | | | | | | | | - Tao Xie
- Movement Disorder Program, Department of Neurology, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
van de Wardt J, van der Stouwe AMM, Dirkx M, Elting JWJ, Post B, Tijssen MA, Helmich RC. Systematic clinical approach for diagnosing upper limb tremor. J Neurol Neurosurg Psychiatry 2020; 91:822-830. [PMID: 32457087 PMCID: PMC7402459 DOI: 10.1136/jnnp-2019-322676] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Tremor is the most common movement disorder worldwide, but diagnosis is challenging. In 2018, the task force on tremor of the International Parkinson and Movement Disorder Society published a consensus statement that proposes a tremor classification along two independent axes: a clinical tremor syndrome and its underlying aetiology. In line with this statement, we here propose a stepwise diagnostic approach that leads to the correct clinical and aetiological classification of upper limb tremor. We also describe the typical clinical signs of each clinical tremor syndrome. A key feature of our algorithm is the distinction between isolated and combined tremor syndromes, in which tremor is accompanied by bradykinesia, cerebellar signs, dystonia, peripheral neuropathy or brainstem signs. This distinction subsequently informs the selection of appropriate diagnostic tests, such as neurophysiology, laboratory testing, structural and dopaminergic imaging and genetic testing. We highlight treatable metabolic causes of tremor, as well as drugs and toxins that can provoke tremor. The stepwise approach facilitates appropriate diagnostic testing and avoids unnecessary investigations. We expect that the approach offered in this article will reduce diagnostic uncertainty and increase the diagnostic yield in patients with tremor.
Collapse
Affiliation(s)
- Jaron van de Wardt
- Department of Neurology, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - A M Madelein van der Stouwe
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands .,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Michiel Dirkx
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan Willem J Elting
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Clinical Neurophysiology, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Bart Post
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marina Aj Tijssen
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Rick C Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
How to approach a patient with parkinsonism - red flags for atypical parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:1-34. [PMID: 31779810 DOI: 10.1016/bs.irn.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinsonism is a clinical syndrome defined by bradykinesia plus rigidity or tremor. Though most commonly encountered in the setting of idiopathic Parkinson's disease, a number of neurodegenerative, structural, metabolic and toxic neurological disorders can result in parkinsonism. Accurately diagnosing the underlying cause of parkinsonism is of both therapeutic and prognostic relevance, especially as we enter the era of disease-modifying treatment trials for neurodegenerative disorders. Being aware of the wide array of potential causes of parkinsonism is of paramount importance for clinicians. In this chapter, we present a pragmatic clinical approach to patients with parkinsonism, specifically focusing on 'red flags', which should alert one to consider diagnoses other than idiopathic Parkinson's disease.
Collapse
|
13
|
Bhidayasiri R, Rattanachaisit W, Phokaewvarangkul O, Lim TT, Fernandez HH. Exploring bedside clinical features of parkinsonism: A focus on differential diagnosis. Parkinsonism Relat Disord 2018; 59:74-81. [PMID: 30502095 DOI: 10.1016/j.parkreldis.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 12/12/2022]
Abstract
The proper diagnosis of parkinsonian disorders usually involves three steps: identifying core features of parkinsonism; excluding other causes; and collating supportive evidence based on clinical signs or investigations. While the recognition of cardinal parkinsonian features is usually straightforward, the appreciation of clinical features suggestive of specific parkinsonian disorders can be challenging, and often requires greater experience and skills. In this review, we outline the clinical features that are relevant to the differential diagnosis of common neurodegenerative parkinsonian disorders, including Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. We aim to make this process relatable to clinicians-in-practice, therefore, have categorised the list of clinical features into groups according to the typical sequence on how clinicians would elicit them during the examination, starting with observation of facial expression and clinical signs of the face, spotting eye movement abnormalities, examination of tremors and jerky limb movements, and finally, examination of posture and gait dysfunction. This review is not intended to be comprehensive. Rather, we have focused on the most common clinical signs that are potentially key to making the correct diagnosis and those that do not require special skills or training for interpretation. Evidence is also provided, where available, such as diagnostic criteria, consensus statements, clinicopathological studies or large multi-centre registries. Pitfalls are also discussed when relevant to the diagnosis. While no clinical signs are pathognomonic for certain parkinsonian disorders, certain clinical clues may assist in narrowing a differential diagnosis and tailoring focused investigations for the individual patient.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand; Department of Neurology, Juntendo University, Tokyo, Japan.
| | - Watchara Rattanachaisit
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Onanong Phokaewvarangkul
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | | | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Paucar M, Nennesmo I, Svenningsson P. Pathological Study of a FMR1 Premutation Carrier With Progressive Supranuclear Palsy. Front Genet 2018; 9:317. [PMID: 30158953 PMCID: PMC6103471 DOI: 10.3389/fgene.2018.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Dual pathology in fragile X mental retardation 1 (FMR1) premutation carriers and fragile X–associated tremor/ataxia syndrome (FXTAS) patients is an emerging phenomenon. Although it includes atypical parkinsonism, neuropathological confirmation is very scarce. Here, we describe neuropathological findings for a female who suffered a severe parkinsonian syndrome with apraxia and supranuclear palsy. She died at the age of 50, six years after the initial diagnosis. Prominent neuronal loss was found in the pallidum, subthalamic nucleus, and tectum, but the loss of Purkinje cells was rather mild. Intranuclear inclusions containing ubiquitin and FMRpolyglycine, a pathological hallmark of FXTAS, were detected in neurons and astrocytes. However, this inclusion pathology was overshadowed by a very prominent four repeat tau accumulation in tufted astrocytes, oligodendroglial coiled bodies, thread structures, and neurons. This is, to best of our knowledge, the first report describing a pathologically confirmed progressive supranuclear palsy – corticobasal syndrome (PSP-CBS) variant case in a FMR1 premutation carrier.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Brain regional iron contents in progressive supranuclear palsy. Parkinsonism Relat Disord 2017; 45:28-32. [PMID: 28982612 DOI: 10.1016/j.parkreldis.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To determine motor-related brain regions in which iron contents correlate with the degree of motor deficits of progressive supranuclear palsy (PSP). METHODS Twenty-four patients with probable PSP and 20 controls were included. Using a 3.0T magnetic resonance imaging scanner, R2* values were measured in the putamen, globus pallidus (GP), substantia nigra (SN), subthalamic nucleus, and dentate nucleus. After adjustment for disease duration and age at examination, correlations between regional brain R2* values and Unified Parkinson Disease Rating Scale (UPDRS) total motor scores or subscores for bradykinesia, rigidity, tremor, or axial motor deficits were investigated. RESULTS Compared to controls, patients with PSP had significantly higher R2* values in all of the five brain regions. UPDRS total motor scores and subscores for bradykinesia and axial motor deficits did not correlate with R2* values of the five brain regions. However, UPDRS subscores for unilateral rigidity were correlated with R2* values of the contralateral putamen and GP. In addition, unilateral UPDRS subscores for tremor were associated with R2* values of the ipsilateral dentate nucleus, contralateral putamen, GP, and SN. CONCLUSION In PSP, excessive iron accumulation occurs in motor-related subcortical regions. Iron-related PSP pathologies in the lenticular nucleus are associated with rigidity severity, while those in the nigro-striato-pallidal unit and dentate nucleus are associated with tremor severity. Bradykinesia and axial motor deficits of PSP seem to be associated with widespread pathologies in the cerebrum, brainstem, cerebellum, as well as the basal ganglia.
Collapse
|
16
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|