1
|
Zhu SG, Chen ZL, Xiao K, Wang ZW, Lu WB, Liu RP, Huang SS, Zhu JH, Zhang X, Wang JY. Association analyses of apolipoprotein E genotypes and cognitive performance in patients with Parkinson's disease. Eur J Med Res 2024; 29:334. [PMID: 38880878 PMCID: PMC11181540 DOI: 10.1186/s40001-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD). The apolipoprotein E (APOE) ε4 genotype increases the risk of Alzheimer's disease (AD). However, the effect of APOEε4 on cognitive function of PD patients remains unclear. In this study, we aimed to understand whether and how carrying APOEε4 affects cognitive performance in patients with early-stage and advanced PD. METHODS A total of 119 Chinese early-stage PD patients were recruited. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Hamilton anxiety scale, Hamilton depression scale, non-motor symptoms scale, Mini-mental State Examination, Montreal Cognitive Assessment, and Fazekas scale were evaluated. APOE genotypes were determined by polymerase chain reactions and direct sequencing. Demographic and clinical information of 521 early-stage and 262 advanced PD patients were obtained from Parkinson's Progression Marker Initiative (PPMI). RESULTS No significant difference in cognitive performance was found between ApoEε4 carriers and non-carriers in early-stage PD patients from our cohort and PPMI. The cerebrospinal fluid (CSF) Amyloid Beta 42 (Aβ42) level was significantly lower in ApoEε4 carrier than non-carriers in early-stage PD patients from PPMI. In advanced PD patients from PPMI, the BJLOT, HVLT retention and SDMT scores seem to be lower in ApoEε4 carriers without reach the statistical significance. CONCLUSIONS APOEε4 carriage does not affect the cognitive performance of early-stage PD patients. However, it may promote the decline of CSF Aβ42 level and the associated amyloidopathy, which is likely to further contribute to the cognitive dysfunction of PD patients in the advanced stage.
Collapse
Affiliation(s)
- Shi-Guo Zhu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhu-Ling Chen
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ke Xiao
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zi-Wei Wang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Wen-Bin Lu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rong-Pei Liu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shi-Shi Huang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiong Zhang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Yong Wang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
2
|
Fahmy EM, Rabah AM, Hashem SE, Rashed LA, Deraz HA, Ismail RS. Serum Apo Lipoprotein E, Apo Lipoprotein E Gene Polymorphisms, and Parkinson's Disease. Neurol India 2024; 72:319-325. [PMID: 38691476 DOI: 10.4103/ni.ni_940_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/18/2023] [Indexed: 05/03/2024]
Abstract
BACKGROUND A central role for apolipoprotein E (APOE) has been suggested in modulating processes of neurodegeneration. OBJECTIVE To study the association between serum APOE levels, APOE gene polymorphisms, and Parkinson's disease (PD). MATERIAL AND METHODS Fifty-five patients with PD and 30 healthy subjects were enrolled. PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr scale, and Schwab-England Activities of Daily Living scale. Serum APOE level and genotyping for APOE polymorphisms were done for PD patients and controls using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. RESULTS Mean serum APOE level was significantly higher in PD patients compared with healthy controls. APOE ε2/4 genotype was present in a significantly higher proportion of patients compared with controls. APOE ε4 allele was significantly associated with a higher score on the "mentation, behavior, and mood section" of UPDRS compared with ε2 allele. APOE ε2 allele was significantly associated with a shorter disease duration compared with ε3 and ε4 alleles. Mean serum APOE level was significantly higher in patients presenting predominantly by rigidity and bradykinesia compared with those presenting predominantly by tremors. Serum APOE level was positively correlated with mean scores of "mentation, behavior, and mood section" of UPDRS and disease duration. Serum APOE level was a significant predictor for the scores of "mentation, behavior, and mood section" of UPDRS. CONCLUSION APOE ε2/4 genotype might be a susceptibility variant for PD. There may be a possible role for APOE in modulating the process of neurodegeneration in PD.
Collapse
Affiliation(s)
- Ebtesam M Fahmy
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany M Rabah
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saher E Hashem
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba A Deraz
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania S Ismail
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Liampas I, Kyriakoulopoulou P, Siokas V, Tsiamaki E, Stamati P, Kefalopoulou Z, Chroni E, Dardiotis E. Apolipoprotein E Gene in α-Synucleinopathies: A Narrative Review. Int J Mol Sci 2024; 25:1795. [PMID: 38339074 PMCID: PMC10855384 DOI: 10.3390/ijms25031795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this narrative review, we delved into the intricate interplay between Apolipoprotein E (APOE) alleles (typically associated with Alzheimer's disease-AD) and alpha-synucleinopathies (aS-pathies), involving Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple-system atrophy (MSA). First, in-vitro, animal, and human-based data on the exacerbating effect of APOE4 on LB pathology were summarized. We found robust evidence that APOE4 carriage constitutes a risk factor for PDD-APOE2, and APOE3 may not alter the risk of developing PDD. We confirmed that APOE4 copies confer an increased hazard towards DLB, as well. Again APOE2 and APOE3 appear unrelated to the risk of conversion. Of note, in individuals with DLB APOE4, carriage appears to be intermediately prevalent between AD and PDD-PD (AD > DLB > PDD > PD). Less consistency existed when it came to PD; APOE-PD associations tended to be markedly modified by ethnicity. Finally, we failed to establish an association between the APOE gene and MSA. Phenotypic associations (age of disease onset, survival, cognitive-neuropsychiatric- motor-, and sleep-related manifestations) between APOE alleles, and each of the aforementioned conditions were also outlined. Finally, a synopsis of literature gaps was provided followed by suggestions for future research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Panagiota Kyriakoulopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Zinovia Kefalopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| |
Collapse
|
4
|
Liu JY, Ma LZ, Wang J, Cui XJ, Sheng ZH, Fu Y, Li M, Ou YN, Yu JT, Tan L, Lian Y. Age-Related Association Between APOE ɛ4 and Cognitive Progression in de novo Parkinson's Disease. J Alzheimers Dis 2023; 91:1121-1132. [PMID: 36565124 DOI: 10.3233/jad-220976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND APOE ɛ4 genotype was correlated with exacerbation of pathology and higher risk of dementia in Parkinson's disease (PD). Meanwhile, the differential influence of APOE ɛ4 on cognition in young and old individuals interpreted as antagonistic pleiotropy. OBJECTIVE To examine whether the effect of APOE ɛ4 on cognitive progression in de novo PD is age dependent. METHODS In this study, 613 de novo PD patients were recruited from Parkinson's Progression Markers Initiative (PPMI). To examine the age-dependent relationship between APOE ɛ4 and cognitive changes, we added 3-way interaction of APOE ɛ4*baseline age*time to the linear mixed-effect (LME) models and evaluated the specific roles of APOE ɛ4 in the middle age group and elderly group separately. Cox regression was utilized to examine the progression of cognition in age-stratified PD participants. RESULTS Age significantly modified relationship between APOE ɛ4 and cognitive changes in most cognitive domains (pinteraction <0.05). In the elderly group, APOE ɛ4 carriers showed steeper decline in global cognition (p = 0.001) as well as in most cognitive domains, and they had a greater risk of cognitive progression (adjusted HR 1.625, 95% CI 1.143-2.310, p = 0.007), compared with non-carriers. However, in the middle age group, no significant relationships between APOE ɛ4 and cognitive decline can be detected. CONCLUSION Our results indicated that the APOE ɛ4 allele has an age-dependent effect on cognitive decline in PD patients. The underlying mechanisms need to be investigated in the future.
Collapse
Affiliation(s)
- Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun Wang
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin-Jing Cui
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Lian
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Umeh CC, Mahajan A, Mihailovic A, Pontone GM. APOE4 Allele, Sex, and Dementia Risk in Parkinson's Disease: Lessons From a Longitudinal Cohort. J Geriatr Psychiatry Neurol 2022; 35:810-815. [PMID: 34958617 PMCID: PMC11062588 DOI: 10.1177/08919887211060019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The effect of APOE4 allele on dementia risk is well established in Alzheimer's disease and Parkinson's disease (PD). However, it is unknown if sex modifies this relationship. We sought to determine the effect of sex on the relationship between APOE4 status and incident cognitive decline in PD. METHODS Data from the prospectively collected longitudinal National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) and Neuropathology Data Set (NDS) were analyzed. The NACC develops and maintains data from approximately 29 National Institutes of Aging-funded Alzheimer's Disease Research Centers. Further details may be found at the NACC web site (www.alz.washington.edu). The visit at which diagnosis of PD was made was termed the baseline visit. All patients with a PD diagnosis but without dementia at the baseline visit were included in the analyses. RESULTS Presence of APOE4 allele was associated with higher odds (OR = 7.4; P < .001) of subsequent diagnosis of dementia and with a faster time to developing dementia (P = .04). Those with APOE4 allele were more likely to have neuropathology associated with Alzheimer's disease than those without APOE4 allele. We did not find any difference by sex. There were no differences between Lewy body pathology or neuron loss in the substantia nigra between the 2 groups. Sex was not associated with dementia risk in PD (OR = 0.53, P = .15) or with the time to dementia onset (P = .22). Sex did not modify the relationship between the APOE4 allele and dementia onset in PD patients (P = .12). CONCLUSIONS APOE4 allele status in PD may be a predictor of cognitive decline in PD but does not appear to be modified by sex.
Collapse
Affiliation(s)
- Chizoba C. Umeh
- Department of Neurology, Beth Israel Lahey Health, Burlington, MA, USA
| | - Abhimanyu Mahajan
- Rush Parkinson’s Disease and Movement Disorders Program, Chicago, IL, USA
| | | | - Gregory M. Pontone
- Departments of Psychiatry and Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Pavelka L, Rauschenberger A, Landoulsi Z, Pachchek S, Marques T, Gomes CP, Glaab E, May P, Krüger R. Body-First Subtype of Parkinson's Disease with Probable REM-Sleep Behavior Disorder Is Associated with Non-Motor Dominant Phenotype. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2561-2573. [PMID: 36245388 PMCID: PMC9837682 DOI: 10.3233/jpd-223511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The hypothesis of body-first vs. brain-first subtype of PD has been proposed with REM-Sleep behavior disorder (RBD) defining the former. The body-first PD presumes an involvement of the brainstem in the pathogenic process with higher burden of autonomic dysfunction. OBJECTIVE To identify distinctive clinical subtypes of idiopathic Parkinson's disease (iPD) in line with the formerly proposed concept of body-first vs. brain-first subtypes in PD, we analyzed the presence of probable RBD (pRBD), sex, and the APOEɛ4 carrier status as potential sub-group stratifiers. METHODS A total of 400 iPD patients were included in the cross-sectional analysis from the baseline dataset with a completed RBD Screening Questionnaire (RBDSQ) for classifying as pRBD by using the cut-off RBDSQ≥6. Multiple regression models were applied to explore (i) the effect of pRBD on clinical outcomes adjusted for disease duration and age, (ii) the effect of sex on pRBD, and (iii) the association of APOEɛ4 and pRBD. RESULTS iPD-pRBD was significantly associated with autonomic dysfunction (SCOPA-AUT), level of depressive symptoms (BDI-I), MDS-UPDRS I, hallucinations, and constipation, whereas significantly negatively associated with quality of life (PDQ-39) and sleep (PDSS). No significant association between sex and pRBD or APOE ɛ4 and pRBD in iPD was found nor did we determine a significant effect of APOE ɛ4 on the PD phenotype. CONCLUSION We identified an RBD-specific PD endophenotype, characterized by predominant autonomic dysfunction, hallucinations, and depression, corroborating the concept of a distinctive body-first subtype of PD. We did not observe a significant association between APOE ɛ4 and pRBD suggesting both factors having an independent effect on cognitive decline in iPD.
Collapse
Affiliation(s)
- Lukas Pavelka
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zied Landoulsi
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, Luxembourg
| | - Sinthuja Pachchek
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Taina Marques
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clarissa P.C. Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - on behalf of the NCER-PD Consortium
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Association of apolipoprotein E variation with cognitive impairment across multiple neurodegenerative diagnoses. Neurobiol Aging 2021; 105:378.e1-378.e9. [PMID: 34039480 DOI: 10.1016/j.neurobiolaging.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
For many years there has been uncertainty regarding how apolipoprotein E (APOE) E2 and E4 variants may influence overlapping features of neurodegeneration, such as cognitive impairment. We aimed to identify whether the APOE variants are associated with cognitive function across various neurodegenerative and cerebrovascular diagnoses (n = 513). Utilizing a comprehensive neuropsychology battery, multivariate multiple regression was used to assess the influence of APOE carrier status and disease cohort on performance across five cognitive domains. Irrespective of disease cohort, E4 carriers had significantly lower performance in verbal memory and visuospatial domains than those with E3/3, while E2 carriers' cognitive performance was not significantly different. However, E2 carriers with frontotemporal dementia (FTD) performed significantly worse than those with E3/3 in the attention/working memory, executive function, and visuospatial domains. Our results highlight that the influence of APOE variation on cognition is complex, in some cases varying based on diagnosis and possibly underlying disease pathology.
Collapse
|
8
|
Jo S, Kim SO, Park KW, Lee SH, Hwang YS, Chung SJ. The role of APOE in cognitive trajectories and motor decline in Parkinson's disease. Sci Rep 2021; 11:7819. [PMID: 33837234 PMCID: PMC8035327 DOI: 10.1038/s41598-021-86483-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
We aimed to investigate the role of the APOE genotype in cognitive and motor trajectories in Parkinson's disease (PD). Using PD registry data, we retrospectively investigated a total of 253 patients with PD who underwent the Mini-Mental State Exam (MMSE) two or more times at least 5 years apart, were aged over 40 years, and free of dementia at the time of enrollment. We performed group-based trajectory modeling to identify patterns of cognitive change using the MMSE. Kaplan-Meier survival analysis was used to investigate the role of the APOE genotype in cognitive and motor progression. Trajectory analysis divided patients into four groups: early fast decline, fast decline, gradual decline, and stable groups with annual MMSE scores decline of - 2.8, - 1.8, - 0.6, and - 0.1 points per year, respectively. The frequency of APOE ε4 was higher in patients in the early fast decline and fast decline groups (50.0%) than those in the stable group (20.1%) (p = 0.007). APOE ε4, in addition to older age at onset, depressive mood, and higher H&Y stage, was associated with the cognitive decline rate, but no APOE genotype was associated with motor progression. APOE genotype could be used to predict the cognitive trajectory in PD.
Collapse
Affiliation(s)
- Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seon-Ok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Korea
| | - Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
9
|
Shiner T, Mirelman A, Rosenblum Y, Kavé G, Weisz MG, Bar-Shira A, Goldstein O, Thaler A, Gurevich T, Orr-Urtreger A, Giladi N, Bregman N. The Effect of GBA Mutations and APOE Polymorphisms on Dementia with Lewy Bodies in Ashkenazi Jews. J Alzheimers Dis 2021; 80:1221-1229. [PMID: 33646158 PMCID: PMC8150431 DOI: 10.3233/jad-201295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Glucocerebrosidase (GBA) gene mutations and APOE polymorphisms are common in dementia with Lewy bodies (DLB), however their clinical impact is only partially elucidated. OBJECTIVE To explore the clinical impact of mutations in the GBA gene and APOE polymorphisms separately and in combination, in a cohort of Ashkenazi Jewish (AJ) patients with DLB. METHODS One hundred consecutively recruited AJ patients with clinically diagnosed DLB underwent genotyping for GBA mutations and APOE polymorphisms, and performed cognitive and motor clinical assessments. RESULTS Thirty-two (32%) patients with DLB were carriers of GBA mutations and 33 (33%) carried an APOE ɛ4 allele. GBA mutation carriers had a younger age of onset (mean [SD] age, 67.2 years [8.9] versus 71.97 [5.91]; p = 0.03), poorer cognition as assessed by the Mini-Mental State Examination (21.41 [6.9] versus 23.97 [5.18]; p < 0.005), and more severe parkinsonism as assessed with the Unified Parkinson's Disease Rating Scale motor part III (34.41 [13.49] versus 28.38 [11.21]; p = 0.01) compared to non-carriers. There were statistically significant interactions between the two genetic factors, so that patients who carried both a mild GBA mutation and the APOE ɛ4 allele (n = 9) had more severe cognitive (p = 0.048) and motor dysfunction (p = 0.037). CONCLUSION We found a high frequency of both GBA mutations and the APOE ɛ4 allele among AJ patients with DLB, both of which have distinct effects on the clinical disease phenotype, separately and in combination.
Collapse
Affiliation(s)
- Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yevgenia Rosenblum
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gitit Kavé
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Education and Psychology, The Open University, Raanana, Israel
| | - Mali Gana Weisz
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tanya Gurevich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Huang M, Wang Y, Wang L, Chen B, Wang X, Hu Y. APOE rs405509 polymorphism and Parkinson's disease risk in the Chinese population. Neurosci Lett 2020; 736:135256. [PMID: 32682842 DOI: 10.1016/j.neulet.2020.135256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder with complex etiology involving both genetic and environmental factors. Apolipoprotein E (ApoE) rs405509 (-219 T/G), a promoter SNP, controls the expression of APOE gene, and plays a modifier effect of APOE ε4 on the susceptibility of Alzheimer's disease. In this study, we investigate the association between APOE rs405509 polymorphism and the susceptibility of PD in a Chinese population. A total of 1020 subjects were collected including 510 sporadic PD patients (mean age: 63.11 ± 9.28 years) and 510 healthy control subjects (mean age: 62.97 ± 9.09 years). APOE rs405509 polymorphism was genotyped using a TaqMan genotyping method. The Hardy-Weinberg Equilibrium (HWE) was calculated for the control group by Chi-square (χ2) test. The strength of this association between the APOE rs405509 polymorphism and PD risk was evaluated with crude odds ratios (ORs) and 95 % confidence intervals (CIs) using a logistic regression analysis. The T allele frequency was 0.84 and 0.70 in the PD and control groups, respectively. T allele carriers of rs405509 were associated with an increased overall risk of PD and in male subjects in the allele, recessive, and additive genetic models. Similar results in female subjects were found in the allele and recessive genetic models. In conclusion, our study suggests that the APOE rs405509 T allele is correlated with increased susceptibility of PD in a Chinese population.
Collapse
Affiliation(s)
- Ming Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lu Wang
- Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Bo Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yu Hu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China.
| |
Collapse
|
11
|
Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Pattern of cortical thinning associated with the BDNF Val66Met polymorphism in Parkinson's disease. Behav Brain Res 2019; 372:112039. [PMID: 31202861 DOI: 10.1016/j.bbr.2019.112039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) val66met polymorphism has been suggested to modulate cognitive deterioration in Parkinson's disease (PD). In particular, the val/val genotype has been recently suggested to increase the risk of cognitive decline in this population. However, to date, little is known about the underlying brain alterations responsible for this association. Here, in a cohort of 93 early PD patients with preserved cognition from the Parkinson's Progression Markers Initiative (PPMI), we found that BDNF val/val patients experience an increased cortical atrophy rate with respect to met carriers in frontal and posterior-cortical regions (p<0.05, corrected). Additionally, BDNF val/val PD patients showed lower I123-ioflupane SPECT DAT uptake in the contralateral caudate region (p=0.017) than met carriers, suggesting an increased striatal dopaminergic degeneration, which represents the pathological hallmark of PD. None of these observations were found in a sample of 38 healthy control (HC) subjects of comparable age and gender. We also observed an interaction effect on brain structure between the BDNF and APOE genotypes: cortical atrophy was associated with harboring the apoliprotein E (APOE) ε4 allele only in BDNF val/met subjects (both in HC and PD groups). Overall, these findings suggest that harboring the BDNF val/val genotype in PD leads to a set of cortical and subcortical brain alterations that could promote cognitive decline in this population.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
12
|
Chen M, Xie M, Peng C, Long S. The absorption of apolipoprotein E by damaged neurons facilitates neuronal repair. Cell Biol Int 2019; 43:623-633. [PMID: 30958617 DOI: 10.1002/cbin.11135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Min Chen
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Ming Xie
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Chao Peng
- Department of NeurologyThe First Affiliated Hospital of University of South China421001 Hengyang China
| | - Shuangqi Long
- Department of CardiologyThe Central Hospital of Yongzhou425000 Yongzhou China
| |
Collapse
|
13
|
Shahid M, Kim J, Leaver K, Hendershott T, Zhu D, Cholerton B, Henderson VW, Tian L, Poston KL. An increased rate of longitudinal cognitive decline is observed in Parkinson's disease patients with low CSF Aß42 and an APOE ε4 allele. Neurobiol Dis 2019; 127:278-286. [PMID: 30826425 DOI: 10.1016/j.nbd.2019.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Low concentrations of cerebrospinal fluid (CSF) amyloid-beta (Aβ-42) are associated with increased risk of cognitive decline in Parkinson's disease (PD). We sought to determine whether APOE genotype modifies the rate of cognitive decline in PD patients with low CSF Aβ-42 compared to patients with normal levels. METHODS The Parkinson's Progression Markers Initiative is a longitudinal, ongoing study of de novo PD participants, which includes APOE genotyping, CSF Aβ-42 determinations, and neuropsychological assessments. We used linear mixed effects models in three PD groups (PD participants with low CSF Aβ at baseline, PD participants with normal CSF Aβ, and both groups combined). Having at least one copy of the APOE ɛ4 allele, time, and the interaction of APOE ɛ4 and time were predictor variables for cognitive change, adjusting for age, gender and education. RESULTS 423 de novo PD participants were followed up to 5 years with annual cognitive assessments. 103 participants had low baseline CSF Aβ-42 (39 APOE ε4+, 64 APOE ε4-). Compared to participants with normal CSF Aβ-42, those with low CSF Aβ-42 declined faster on most cognitive tests. Within the low CSF Aβ-42 group, APOE ε4+ participants had faster rates of decline on the Montreal Cognitive Assessment (primary outcome; 0.57 points annual decline, p = .005; 5-year standardized change of 1.2) and the Symbol Digit Modalities Test (1.4 points annual decline, p = .002; 5-year standardized change of 0.72). DISCUSSION PD patients with low CSF Aβ-42 and APOE ε4+ showed a higher rate of cognitive decline early in the disease. Tests of global cognition (Montreal Cognitive Assessment) and processing speed (Symbol Digit Modalities Test) were the most sensitive to early cognitive decline. Results suggest that CSF Aβ-42 and APOE ε4 might interact to promote early cognitive changes in PD patients.
Collapse
Affiliation(s)
- Marian Shahid
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America
| | - Jeehyun Kim
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America
| | - Katherine Leaver
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America; Mount Sinai Beth Israel, Department of Neurology, 10 Union Square East, New York, NY 10003, United States of America
| | - Taylor Hendershott
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America
| | - Delphine Zhu
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America
| | - Brenna Cholerton
- Stanford University, Department of Pathology, 300 Pasteur Dr Rm L235, MC 5324, Stanford, CA 94305, United States of America
| | - Victor W Henderson
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America; Stanford University, Department of Health Research and Policy (Epidemiology), 259 Campus Drive, MC 5405, Stanford, CA 94305, United States of America
| | - Lu Tian
- Stanford University, Department of Biomedical Data Science, 150 Governor's Lane, Room T160C, MC 5464, Stanford, CA 94305, United States of America
| | - Kathleen L Poston
- Stanford University, Department of Neurology and Neurological Sciences, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America; Stanford University, Department of Neurosurgery, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, United States of America.
| |
Collapse
|
14
|
Sun R, Yang S, Zheng B, Liu J, Ma X. Apolipoprotein E Polymorphisms and Parkinson Disease With or Without Dementia: A Meta-Analysis Including 6453 Participants. J Geriatr Psychiatry Neurol 2019; 32:3-15. [PMID: 30526202 DOI: 10.1177/0891988718813675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A large number of case-control studies have investigated the association of apolipoprotein E ( APOE) polymorphisms with Parkinson disease (PD) and Parkinson disease dementia (PDD), with inconsistent results. This meta-analysis aimed to evaluate the relationship between APOE polymorphisms and PD/PDD risk. We searched for published studies in PubMed, Web of Science, WanFang Data (in Chinese), and CNKI (in Chinese) from inception to June 2017. Case-control studies reporting part or complete APOE genotype and allele frequency data were included. Pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated using RevMan 5.3 software. A total of 39 studies involving 6453 cases with PD, with 461 cases with PDD, and 6855 controls were included in this meta-analysis. The results showed that the APOE ε3 allele was a protective factor for PD (OR = 0.90, 95% CI: 0.81-0.99; P = .04), whereas no significant differences in PD risk among all cases compared to controls were found for APOE ε2 and ε4. In Asian subgroups, the APOE ε4 allele was shown to be a risk factor for PD (OR = 1.22, 95% CI: 1.01-1.46; P = .04). Additionally, APOE polymorphisms were significantly associated with PDD risk in the entire case group (ε3: OR = 0.72, 95% CI: 0.58-0.89, P = .003; ε4: OR = 1.46, 95% CI: 1.12-1.88, P = .004) and in Asian subgroups.
Collapse
Affiliation(s)
- Ruoyi Sun
- 1 Department of General Practitioner, Jiang Chuan Community Health Service Center, Shanghai, China
| | - Simin Yang
- 2 Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Zheng
- 3 Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Liu
- 4 Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- 3 Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Meta-Analysis of the Relationship between the APOE Gene and the Onset of Parkinson's Disease Dementia. PARKINSONS DISEASE 2018; 2018:9497147. [PMID: 30405900 PMCID: PMC6204165 DOI: 10.1155/2018/9497147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Purpose To clarify the relationship between certain genotypes or alleles of the APOE gene and the onset risk of Parkinson's disease dementia (PDD). Methods The PubMed, Cochrane, Embase, CBM, CNKI, and Wanfang databases were searched to identify all case-control studies and cohort studies published before October 30, 2017, that investigated the association between the APOE gene and the onset of PDD. Manual information retrieval was also performed. All studies that met the quality requirements were included in a meta-analysis performed using RevMan 5.3 software. Results The meta-analysis included 17 studies, with a total of 820 patients in the PDD group and 1,922 in the non-PDD group. The influence of the APOE gene on PDD onset was analyzed from three aspects: five genotypes vs. ε3/3, ε2+/ε4+ vs. ε3/3, and ε4+ vs. ε4-. The risk factors for PDD may include the genotypes ε3/4 (OR 1.47, 95% CI 1.14-1.89) and ε4/4 (OR 2.93, 95% CI 1.20-7.14). In patients with PDD, there was no significant difference in the distribution of ε2+ vs. ε3/3 (OR 1.35, 95% CI 0.97-1.87, P=0.07). The risk of PDD was 1.61 times greater in ε4+ compared with ε3/3 (OR 1.61, 95% CI 1.24-2.08, P=0.0003). As the results indicated that ε2+ did not play a role as a risk factor or a protective factor, we divided the population into ε4+ and ε4- for the meta-analysis and found that, among patients with Parkinson's disease, the dementia risk of those with ε4+ was 1.72 times greater than that of those with ε4- (OR 1.72, 95% CI 1.41-2.10, P < 0.00001). Subgroup analysis in accordance with different geographical regions revealed that ε4+ was a risk factor for PDD in people from all regions. Conclusions Among the APOE genotypes, ε2+ is neither a risk factor nor a protective factor for PDD, while ε4+ is a risk factor for PDD. The present results are applicable to Asian, European, and American patients with Parkinson's disease. Regarding the single APOE genotypes, ε3/4 and ε4/4 may be risk factors for PDD; however, further studies with large sample sizes are needed to verify this.
Collapse
|
16
|
Ba M, Yu G, Kong M, Liang H, Yu L. CSF Aβ 1-42 level is associated with cognitive decline in early Parkinson's disease with rapid eye movement sleep behavior disorder. Transl Neurodegener 2018; 7:22. [PMID: 30338062 PMCID: PMC6174574 DOI: 10.1186/s40035-018-0129-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022] Open
Abstract
Background Rapid eye movement sleep behavior disorder (RBD) is associated with cognitive decline in early Parkinson's disease (PD). However, the underlyling basis for this association remains unclear. Methods Parkinson's Progression Marker's Initiative (PPMI) subjects underwent baseline RBD testing with RBD sleep questionnaire (RBDSQ). Serial assessments included measures of motor symptoms, non-motor symptoms (NMS), neuropsychological assessment, blood and cerebrospinal fluid (CSF) biomarkers. Up to three years follow-up data were included. We stratified early PD subjects into PD with RBD (RBDSQ score > 5) and PD without RBD groups. Then, we evaluated baseline biomarkers in each group as a predictor of cognitive decline using Montreal Cognitive Assessment (MoCA) score changes over three years in regression models. Results Four hundred twenty-three PD subjects were enrolled at baseline, and a total of 350 PD subjects had completed 3 years of study follow-up with completely serial assessments. We found that at baseline, only CSF β-amyloid 1-42 (Aβ1-42) was significantly lower in PD subjects with RBD. On three years follow-up analysis, PD subjects with RBD were more likely to develop incident mild cognitive impairment (MCI) and presented greater cognitive decline in MoCA score. Lower baseline CSF Aβ1-42 predicted cognitive decline over 3 years only in PD subjects with RBD (β = - 0.03, P = 0.003). A significant interaction between Aβ1-42 and the 2 groups confirmed that this effect was indeed higher in PD with RBD than the other individual (β = - 2.85, P = 0.014). Conclusion These findings indicate that CSF Aβ1-42 level is associated with global cognitive decline in early PD with RBD. The addition of CSF Aβ1-42 to RBD testing increase the likelihood of identifying those at high risk for cognitive decline in early PD.
Collapse
Affiliation(s)
- Maowen Ba
- 1Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong 264000 People's Republic of China
| | - Guoping Yu
- 1Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong 264000 People's Republic of China
| | - Min Kong
- 2Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000 People's Republic of China
| | - Hui Liang
- 2Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000 People's Republic of China
| | - Ling Yu
- 2Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000 People's Republic of China
| |
Collapse
|
17
|
Li DTH, Hui ES, Chan Q, Yao N, Chua SE, McAlonan GM, Pang SYY, Ho SL, Mak HKF. Quantitative susceptibility mapping as an indicator of subcortical and limbic iron abnormality in Parkinson's disease with dementia. Neuroimage Clin 2018; 20:365-373. [PMID: 30128274 PMCID: PMC6096006 DOI: 10.1016/j.nicl.2018.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/19/2023]
Abstract
Late stage Parkinson's disease (PD) patients were commonly observed with other non-motor comorbidities such as dementia and psychosis. While abnormal iron level in the substantia nigra was clinically accepted as a biomarker of PD, it was also suggested that the increased iron deposition could impair other brain regions and induce non-motor symptoms. A new Magnetic Resonance Imaging (MRI) called Quantitative Susceptibility Mapping (QSM) has been found to measure iron concentration in the grey matter reliably. In this study, we investigated iron level of different subcortical and limbic structures of Parkinson's disease (PD) patients with and without dementia by QSM. QSM and volumetric analysis by MRI were performed in 10 PD dementia (PDD) patients (73 ± 6 years), 31 PD patients (63 ± 8 years) and 27 healthy controls (62 ± 7 years). No significant differences were observed in the L-Dopa equivalent dosage for the two PD groups (p = 0.125). Putative iron content was evaluated in different subcortical and limbic structures of the three groups, as well as its relationship with cognitive performance. One-way ANCOVA with FDR adjustment at level of 0.05, adjusted for age and gender, showed significant group differences for left and right hippocampus (p = 0.015 & 0.032, respectively, BH-corrected for multiple ROIs) and right thalamus (p = 0.032, BH-corrected). Post-hoc test with Bonferroni's correction suggested higher magnetic susceptibility in PDD patients than healthy controls in the left and right hippocampus (p = 0.001 & 0.047, respectively, Bonferroni's corrected), while PD patients had higher magnetic susceptibility than the healthy controls in right hippocampus and right thalamus (p = 0.006 & 0.005, respectively, Bonferroni's corrected). PDD patients also had higher susceptibility than the non-demented PD patients in left hippocampus (p = 0.046, Bonferroni's corrected). The magnetic susceptibilities of the left and right hippocampus were negatively correlated with the Mini-Mental State Examination score (r = -0.329 & -0.386, respectively; p < 0.05). This study provides support for iron accumulation in limbic structures of PDD and PD patients and its correlation with cognitive performance, however, its putative involvement in development of non-motor cognitive dysfunction in PD pathogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Darrell T H Li
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | - Edward S Hui
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | | | - N Yao
- Department of Psychiatry, Yale University, New Haven, CT, United States,; Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - S E Chua
- Department of Psychiatry, The University of Hong Kong, Hong Kong,; Raffles Counselling Centre, Raffles Hospital, Singapore
| | - Gráinne M McAlonan
- Department of Psychiatry, The University of Hong Kong, Hong Kong,; Department of Forensic and Neurodevelopmental Science, King's College London, London, United Kingdom,; South London and Maudsley NHS Foundation Trust, United Kingdom
| | - Shirley Y Y Pang
- Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - S L Ho
- Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong,; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong,; Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Jellinger KA, Korczyn AD. Are dementia with Lewy bodies and Parkinson's disease dementia the same disease? BMC Med 2018; 16:34. [PMID: 29510692 PMCID: PMC5840831 DOI: 10.1186/s12916-018-1016-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which share many clinical, neurochemical, and morphological features, have been incorporated into DSM-5 as two separate entities of major neurocognitive disorders with Lewy bodies. Despite clinical overlap, their diagnosis is based on an arbitrary distinction concerning the time of onset of motor and cognitive symptoms, namely as early cognitive impairment in DLB and later onset following that of motor symptoms in PDD. Their morphological hallmarks - cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies - are similar, but clinical differences at onset suggest some dissimilar profiles. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is provided herein. DISCUSSION The clinical constellations of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and postmortem studies have revealed a more pronounced cortical atrophy, elevated cortical and limbic Lewy body pathologies, higher Aβ and tau loads in cortex and striatum in DLB compared to PDD, and earlier cognitive defects in DLB. Conversely, multitracer PET studies have shown no differences in cortical and striatal cholinergic and dopaminergic deficits. Clinical management of both DLB and PDD includes cholinesterase inhibitors and other pharmacologic and non-drug strategies, yet with only mild symptomatic effects. Currently, no disease-modifying therapies are available. CONCLUSION DLB and PDD are important dementia syndromes that overlap in many clinical features, genetics, neuropathology, and management. They are currently considered as subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), from incidental Lewy body disease and non-demented Parkinson's disease to PDD, DLB, and DLB with Alzheimer's disease at the most severe end. Cognitive impairment in these disorders is induced not only by α-synuclein-related neurodegeneration but by multiple regional pathological scores. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with Alzheimer's disease and other proteinopathies. While we prefer to view DLB and PDD as extremes on a continuum, there remains a pressing need to more clearly differentiate these syndromes and to understand the synucleinopathy processes leading to either one.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| | - Amos D Korczyn
- Tel-Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| |
Collapse
|
19
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
20
|
Abstract
Dementia is a frequent problem encountered in advanced stages of Parkinson disease (PD). In recent years, research has focused on the pre-dementia stages of cognitive impairment in PD, including mild cognitive impairment (MCI). Several longitudinal studies have shown that MCI is a harbinger of dementia in PD, although the course is variable, and stabilization of cognition - or even reversal to normal cognition - is not uncommon. In addition to limbic and cortical spread of Lewy pathology, several other mechanisms are likely to contribute to cognitive decline in PD, and a variety of biomarker studies, some using novel structural and functional imaging techniques, have documented in vivo brain changes associated with cognitive impairment. The evidence consistently suggests that low cerebrospinal fluid levels of amyloid-β42, a marker of comorbid Alzheimer disease (AD), predict future cognitive decline and dementia in PD. Emerging genetic evidence indicates that in addition to the APOE*ε4 allele (an established risk factor for AD), GBA mutations and SCNA mutations and triplications are associated with cognitive decline in PD, whereas the findings are mixed for MAPT polymorphisms. Cognitive enhancing medications have some effect in PD dementia, but no convincing evidence that progression from MCI to dementia can be delayed or prevented is available, although cognitive training has shown promising results.
Collapse
|
21
|
Fagan ES, Pihlstrøm L. Genetic risk factors for cognitive decline in Parkinson's disease: a review of the literature. Eur J Neurol 2017; 24:561-e20. [DOI: 10.1111/ene.13258] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023]
Affiliation(s)
- E. S. Fagan
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - L. Pihlstrøm
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Department of Neurology; Oslo University Hospital; Oslo Norway
| |
Collapse
|
22
|
Lim EW, Tan EK. Genes and Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:111-127. [DOI: 10.1016/bs.irn.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|