1
|
Langer A, Lucke-Paulig L, Gassner L, Krüger R, Weiss D, Gharabaghi A, Zach H, Maetzler W, Hobert MA. Additive Effect of Dopaminergic Medication on Gait Under Single and Dual-Tasking Is Greater Than of Deep Brain Stimulation in Advanced Parkinson Disease With Long-Duration Deep Brain Stimulation. Neuromodulation 2023; 26:364-373. [PMID: 35227581 DOI: 10.1016/j.neurom.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Patients with advanced Parkinson disease (PD) often experience problems with mobility, including walking under single- (ST) and dual-tasking (DT) conditions. The effects of deep brain stimulation in the subthalamic nucleus (DBS) versus dopaminergic medication (Med) on these conditions are not well investigated. MATERIALS AND METHODS We used two ST and two DT-gait paradigms to evaluate the effect of DBS and dopaminergic medication on gait parameters in 14 PD patients (mean age 66 ± 8 years) under DBSOFF/MedON, DBSON/MedOFF, and DBSON/MedON conditions. They performed standardized 20-meter walks with convenient and fast speed. To test DT capabilities, they performed a checking-boxes and a subtraction task during fast-paced walking. Quantitative gait analysis was performed using a tri-axial accelerometer (Dynaport, McRoberts, The Netherlands). Dual-task costs (DTC) of gait parameters and secondary task performance were compared intraindividually between DBSOFF/MedON vs DBSON/MedON, and DBSON/MedOFF vs DBSON/MedON to estimate responsiveness. RESULTS Dopaminergic medication increased gait speed and cadence at convenient speed. It increased cadence and decreased number of steps at fast speed, and improved DTC of cadence during the checking boxes and DTC of cadence and number of steps during the subtraction tasks. DBS only improved DTC of cadence during the checking boxes and DTC of gait speed during the subtraction task. CONCLUSION Dopaminergic medication showed larger additional effects on temporal gait parameters under ST and DT conditions in advanced PD than DBS. These results, after confirmation in independent studies, should be considered in the medical management of advanced PD patients with gait and DT deficits.
Collapse
Affiliation(s)
- Agnes Langer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lara Lucke-Paulig
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Endocrinology, Diabetology and Geriatrics, Stuttgart General Hospital, Bad Cannstatt, Germany
| | - Lucia Gassner
- Department of Sport Physiology, Institute of Sports Sciences, University of Vienna, Vienna, Austria; Royal Melbourne Institute of Technology, Melbourne, Australia; HTA Austria - Austrian Institute for Health Technology Assessment GmbH, Vienna, Austria
| | - Rejko Krüger
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Luxembourg Institute of Health, Strassen, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Daniel Weiss
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Heidemarie Zach
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Maetzler
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Markus A Hobert
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Razmkon A, Abdollahifard S, Taherifard E, Roshanshad A, Shahrivar K. Effect of deep brain stimulation on freezing of gait in patients with Parkinson's disease: a systematic review. Br J Neurosurg 2023; 37:3-11. [PMID: 35603983 DOI: 10.1080/02688697.2022.2077308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Freezing of gait (FOG) is a disabling gait disorder in patients with Parkinson's disease (PD), characterized by recurrent episodes of halting steps. Dopaminergic drugs are common treatments for PD and FOG; however, these drugs may worsen FOG. Deep brain stimulation (DBS) is another option used to treat selected patients. The device needs to be programmed at a specific frequency, amplitude, and pulse width to achieve optimum effects for each patient. This systematic review aimed to evaluate the efficacy of DBS for FOG and its correlation with programmed parameters and the location of the electrodes in the brain. MATERIALS AND METHODS Data for this systematic review were gathered from five online databases: Medline (via PubMed), Scopus, Embase, Web of Science, and Cochrane Library (including both Cochrane Reviews and Cochrane Trials) with a broad search strategy. We included those articles that reported clinical trials and a specific measurement for FOG. RESULTS This review included 13 studies of DBS that targeted the subthalamic nucleus (STN), substantia nigra (SNr), or pedunculopontine nucleus (PPN). Our analysis showed that low-frequency stimulation (LFS) was superior to high-frequency stimulation (HFS) for improving FOG. In the long term, the efficacy of both LFS and HFS decreased. The effect of amplitude was variable, and this parameter needed to be adjusted for each patient. Bilateral stimulation was better than unilateral stimulation. CONCLUSION DBS is a promising choice for the treatment of severe FOG in patients with PD. Bilateral, low-frequency stimulation combined with medical therapy is associated with better responses, especially in the first 2 years of treatment. However, individualizing the DBS parameters should be considered to optimize treatment response.
Collapse
Affiliation(s)
- Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Erfan Taherifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Roshanshad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyab Shahrivar
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
4
|
Song J, Kim J, Lee MJ, Ahn JH, Lee DY, Youn J, Chung MJ, Kim Z, Cho JW. Differential diagnosis between Parkinson's disease and atypical parkinsonism based on gait and postural instability: Artificial intelligence using an enhanced weight voting ensemble model. Parkinsonism Relat Disord 2022; 98:32-37. [PMID: 35447488 DOI: 10.1016/j.parkreldis.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Parkinsonian diseases and cerebellar ataxia among movement disorders, are representative diseases which present with distinct pathological gaits. We proposed a machine learning system that can differentiate Parkinson's disease (PD), cerebellar ataxia and progressive supranuclear palsy Richardson syndrome (PSP-RS) based on postural instability and gait analysis. METHODS We screened 1467 gait (GAITRite) and postural instability (Pedoscan) analyses performed in Samsung Medical Center from January 2019 to December 2020. PD, probable PSP-RS, and cerebellar ataxia (i.e., probable MSA-C, hereditary ataxia, and sporadic adult-onset ataxia) were included in the study. The gated recurrent units for GaitRite and the deep neural network for Pedoscan were applied. The enhanced weight voting ensemble (EWVE) method was applied to incorporate the two modalities. RESULTS We included 551 PD, 38 PSP-RS, 113 cerebellar ataxia and among them, 71 were MSA-C. Pedoscan-based and Gait-based model showed high sensitivity but low specificity in differentiating atypical parkinsonism from PD. The EWVE showed significantly improved specificity and reliable performance in differentiation between PD vs. ataxia patients (AUC 0.974 ± 0.036, sensitivity 0.829 ± 0.217, specificity 0.969 ± 0.038), PD vs. MSA-C (AUC 0.975 ± 0.020, sensitivity 0.823 ± 0.162, specificity 0.932 ± 0.030) and PD vs. PSP-RS (AUC 0.963 ± 0.028, sensitivity 0.555 ± 0.157, specificity 0.936 ± 0.031). CONCLUSION We proposed reliable Pedoscan-based, Gait-based and EWVE model in differentiating gait disorders by integrating information from gait and postural instability. This model can provide diagnosis guidelines to primary caregivers and assist in differential diagnosis of PD from atypical parkinsonism for neurologists.
Collapse
Affiliation(s)
- Joomee Song
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Junghyun Kim
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Dong Yeong Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Myung Jin Chung
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Zero Kim
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci 2022; 43:1627-1639. [DOI: 10.1007/s10072-021-05796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
6
|
Strelow JN, Baldermann JC, Dembek TA, Jergas H, Petry-Schmelzer JN, Schott F, Dafsari HS, Moll CKE, Hamel W, Gulberti A, Visser-Vandewalle V, Fink GR, Pötter-Nerger M, Barbe MT. Structural Connectivity of Subthalamic Nucleus Stimulation for Improving Freezing of Gait. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1251-1267. [PMID: 35431262 DOI: 10.3233/jpd-212997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Freezing of gait (FOG) is among the most common and disabling symptoms of Parkinson's disease (PD). Studies show that deep brain stimulation (DBS) of the subthalamic nucleus (STN) can reduce FOG severity. However, there is uncertainty about pathways that need to be modulated to improve FOG. OBJECTIVE To investigate whether STN-DBS effectively reduces FOG postoperatively and whether structural connectivity of the stimulated tissue explains variance of outcomes. METHODS We investigated 47 patients with PD and preoperative FOG. Freezing prevalence and severity was primarily assessed using the Freezing of Gait Questionnaire (FOG-Q). In a subset of 18 patients, provoked FOG during a standardized walking course was assessed. Using a publicly available model of basal-ganglia pathways we determined stimulation-dependent connectivity associated with postoperative changes in FOG. A region-of-interest analysis to a priori defined mesencephalic regions was performed using a disease-specific normative connectome. RESULTS Freezing of gait significantly improved six months postoperatively, marked by reduced frequency and duration of freezing episodes. Optimal stimulation volumes for improving FOG structurally connected to motor areas, the prefrontal cortex and to the globus pallidus. Stimulation of the lenticular fasciculus was associated with worsening of FOG. This connectivity profile was robust in a leave-one-out cross-validation. Subcortically, stimulation of fibers crossing the pedunculopontine nucleus and the substantia nigra correlated with postoperative improvement. CONCLUSION STN-DBS can alleviate FOG severity by modulating specific pathways structurally connected to prefrontal and motor cortices. More differentiated FOG assessments may allow to differentiate pathways for specific FOG subtypes in the future.
Collapse
Affiliation(s)
- Joshua N Strelow
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juan C Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Jergas
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan N Petry-Schmelzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frederik Schott
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haidar S Dafsari
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Rahimpour S, Gaztanaga W, Yadav AP, Chang SJ, Krucoff MO, Cajigas I, Turner DA, Wang DD. Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation 2021; 24:829-842. [PMID: 33368872 PMCID: PMC8233405 DOI: 10.1111/ner.13347] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. MATERIALS AND METHODS Clinical-anatomical correlations, electrophysiology, and functional imaging have generated several mechanistic hypotheses, ranging from the most distal (abnormal central pattern generators of the spinal cord) to the most proximal (frontal executive dysfunction). Here, we review the neuroanatomy and pathophysiology of gait initiation in the context of FoG, and we discuss targets of central nervous system neuromodulation and their outcomes so far. The PubMed database was searched using these key words: neuromodulation, freezing of gait, Parkinson's disease, and gait disorders. CONCLUSION Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Wendy Gaztanaga
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amol P. Yadav
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephano J. Chang
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Mancini C, Modugno N, Santilli M, Pavone L, Grillea G, Morace R, Mirabella G. Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Front Neurol 2019; 9:1149. [PMID: 30666229 PMCID: PMC6330317 DOI: 10.3389/fneur.2018.01149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
Despite the relevance of inhibitory control in shaping our behavior its neural substrates are still hotly debated. In this regard, it has been suggested that inhibitory control relies upon a right-lateralized network which involves the right subthalamic nucleus (STN). To assess the role of STN, we took advantage of a relatively rare model, i.e., advanced Parkinson's patients who received unilateral deep-brain stimulation (DBS) of the STN either of the left (n = 10) or of the right (n = 10) hemisphere. We gave them a stop-signal reaching task, and we compared patients' performance in two experimental conditions, DBS-ON and DBS-OFF. In addition, we also tested 22 age-matched healthy participants. As expected, we found that inhibitory control is impaired in Parkinson's patients with respect to healthy participants. However, neither reactive nor proactive inhibition is improved when either the right or the left DBS is active. We interpreted these findings in light of the fact that previous studies, exploiting exactly the same task, have shown that only bilateral STN DBS restores a near-normal inhibitory control. Thus, although null results have to be interpreted with caution, our current findings confirm that the right STN does not play a key role in suppressing pending actions. However, on the ground of previous studies, it is very likely that this subcortical structure is part of the brain network subserving inhibition but to implement this executive function both subthalamic nuclei must be simultaneously active. Our findings are of significance to other researchers studying the effects of STN DBS on key executive functions, such as impulsivity and inhibition and they are also of clinical relevance for determining the therapeutic benefits of STN DBS as they suggest that, at least as far as inhibitory control is concerned, it is better to implant DBS bilaterally than unilaterally.
Collapse
Affiliation(s)
- Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | | | | | | | | | | | - Giovanni Mirabella
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
9
|
Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, Hass CJ. A meta-analysis: Parkinson's disease and dual-task walking. Parkinsonism Relat Disord 2018; 62:28-35. [PMID: 30594454 DOI: 10.1016/j.parkreldis.2018.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
A growing body of literature has reported the effects of dual tasks on gait performance in people with Parkinson's disease (PD). The purpose of this meta-analysis was to synthesize the existing literature and quantify the overall influence of dual tasks on gait performance in PD. A thorough literature search was conducted, and 19 studies met the stringent inclusion criteria. Two moderator variable analyses examined the dual-task effect by: (a) mean single-task gait speed for each study (≥1.1 m/s or < 1.1 m/s), and (b) the type of dual task (arithmetic, language, memory, and motor). Three main findings were revealed by a random effects model analysis. First, a strong negative effect of dual tasks on walking performance (SMD = -0.68) confirmed that gait performance is adversely affected by dual tasks in people with PD. Second, the significant negative effect of dual tasks is present regardless of the mean level of single-task gait speed in a study. Third, dual-task walking speed deteriorates regardless of the type of dual task. Together, these results confirm that dual tasks severely affect walking performances in people with PD.
Collapse
Affiliation(s)
- Tiphanie E Raffegeau
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lisa M Krehbiel
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Nyeonju Kang
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA; Division of Sport Science & Sport Science Institute, Incheon National University, Seoul, South Korea
| | - Frency J Thijs
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lori J P Altmann
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - James H Cauraugh
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Huang C, Chu H, Zhang Y, Wang X. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson's Disease: Update on Current Research and Future Perspectives. Front Neurosci 2018; 12:29. [PMID: 29503606 PMCID: PMC5821065 DOI: 10.3389/fnins.2018.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Freezing of gait (FOG) is a gait disorder featured by recurrent episodes of temporary gait halting and mainly found in advanced Parkinson's disease (PD). FOG has a severe impact on the quality of life of patients with PD. The pathogenesis of FOG is unclear and considered to be related to several brain areas and neural circuits. Its close connection with cognitive disorder has been proposed and some researchers explain the pathogenesis using the cognitive model theory. FOG occurs concurrently with cognitive disorder in some PD patients, who are poorly responsive to medication therapy. Deep brain stimulation (DBS) proves effective for FOG in PD patients. Cognitive impairment plays a role in the formation of FOG. Therefore, if DBS works by improving the cognitive function, both two challenging conditions can be ameliorated by DBS. We reviewed the clinical studies related to DBS for FOG in PD patients over the past decade. In spite of the varying stimulation parameters used in different studies, DBS of either subthalamic nucleus (STN) or pedunculopontine nucleus (PPN) alone or in combination can improve the symptoms of FOG. Moreover, the treatment efficacy can last for 1–2 years and DBS is generally safe. Although few studies have been conducted concerning the use of DBS for cognitive disorder in FOG patients, the existing studies seem to indicate that PPN is a potential therapeutic target to both FOG and cognitive disorder. However, most of the studies have a small sample size and involve sporadic cases, so it remains uncertain which nucleus is the optimal target of stimulation. Prospective clinical trials with a larger sample size are needed to systematically assess the efficacy of DBS for FOG and cognitive disorder.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front Neurosci 2017; 11:564. [PMID: 29066947 PMCID: PMC5641319 DOI: 10.3389/fnins.2017.00564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.
Collapse
Affiliation(s)
- Kimberly B. Hoang
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Isaac R. Cassar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren M. Grill
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| |
Collapse
|