1
|
Higinbotham AS, Kilbane CW. The gastrointestinal tract and Parkinson's disease. Front Cell Infect Microbiol 2024; 13:1158986. [PMID: 38292855 PMCID: PMC10825967 DOI: 10.3389/fcimb.2023.1158986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Alissa S. Higinbotham
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Camilla W. Kilbane
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Wei BR, Zhao YJ, Cheng YF, Huang C, Zhang F. Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immun Ageing 2024; 21:1. [PMID: 38166953 PMCID: PMC10759355 DOI: 10.1186/s12979-023-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Collapse
Affiliation(s)
- Bang-Rong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Feng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Huang
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
4
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
5
|
Tan AH, Chuah KH, Beh YY, Schee JP, Mahadeva S, Lim SY. Gastrointestinal Dysfunction in Parkinson's Disease: Neuro-Gastroenterology Perspectives on a Multifaceted Problem. J Mov Disord 2023; 16:138-151. [PMID: 37258277 DOI: 10.14802/jmd.22220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
Patients with Parkinson's disease (PD) face a multitude of gastrointestinal (GI) symptoms, including nausea, bloating, reduced bowel movements, and difficulties with defecation. These symptoms are common and may accumulate during the course of PD but are often under-recognized and challenging to manage. Objective testing can be burdensome to patients and does not correlate well with symptoms. Effective treatment options are limited. Evidence is often based on studies in the general population, and specific evidence in PD is scarce. Upper GI dysfunction may also interfere with the pharmacological treatment of PD motor symptoms, which poses significant management challenges. Several new less invasive assessment tools and novel treatment options have emerged in recent years. The current review provides an overview and a practical approach to recognizing and diagnosing common upper and lower GI problems in PD, e.g., dyspepsia, gastroparesis, small bowel dysfunction, chronic constipation, and defecatory dysfunction. Management aspects are discussed based on the latest evidence from the PD and general populations, with insights for future research pertaining to GI dysfunction in PD.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kee Huat Chuah
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuan Ye Beh
- Department of Medicine, Hospital Pulau Pinang, Penang, Malaysia
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
7
|
Tsai ST, Nithiyanantham S, Satyanarayanan SK, Su KP. Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:435-458. [PMID: 36949321 DOI: 10.1007/978-981-19-7376-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In this chapter, we conducted a systemic literature review for the anti-inflammatory effects of Traditional Chinese Medicine (TCM) applying molecular mechanisms focusing on the neuroinflammation and gut-brain axis in three neuropsychiatric disorders: major depressive disorder, Alzheimer's disease, and Parkinson's disease. We demonstrated the anti-inflammation or immunomodulation effects of TCM, including acupuncture, from basic and clinical research, including cellular and molecular approaches. In conclusion, inflammation plays a critical role in the neuropsychopathological process. At the same time, anti-inflammation seems to be the common biological pathway for the effects of TCM and acupuncture in depression, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan.
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
- An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
8
|
Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiol Dis 2022; 173:105837. [PMID: 35963526 DOI: 10.1016/j.nbd.2022.105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting elderly people. Pathogenic mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of autosomal dominant PD. LRRK2 activity is enhanced in both familial and idiopathic PD, thereby studies on LRRK2-related PD research are essential for understanding PD pathology. Finding an appropriate model to mimic PD pathology is crucial for revealing the molecular mechanisms underlying disease progression, and aiding drug discovery. In the last few years, the use of human-induced pluripotent stem cells (hiPSCs) grew exponentially, especially in studying neurodegenerative diseases like PD, where working with brain neurons and glial cells was mainly possible using postmortem samples. In this review, we will discuss the use of hiPSCs as a model for PD pathology and research on the LRRK2 function in both neuronal and immune cells, together with reviewing the recent advances in 3D organoid models and microfluidics.
Collapse
Affiliation(s)
- Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands; Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Angelica Maria Sabogal-Guaqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Sekar Galuh
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Anastasia Alexander
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology (GBB), University of Groningen, Groningen, the Netherlands; YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Bhidayasiri R, Phuenpathom W, Tan AH, Leta V, Phumphid S, Chaudhuri KR, Pal PK. Management of dysphagia and gastroparesis in Parkinson's disease in real-world clinical practice - Balancing pharmacological and non-pharmacological approaches. Front Aging Neurosci 2022; 14:979826. [PMID: 36034128 PMCID: PMC9403060 DOI: 10.3389/fnagi.2022.979826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) issues are commonly experienced by patients with Parkinson's disease (PD). Those that affect the lower GI tract, such as constipation, are the most frequently reported GI problems among patients with PD. Upper GI issues, such as swallowing dysfunction (dysphagia) and delayed gastric emptying (gastroparesis), are also common in PD but are less well recognized by both patients and clinicians and, therefore, often overlooked. These GI issues may also be perceived by the healthcare team as less of a priority than management of PD motor symptoms. However, if left untreated, both dysphagia and gastroparesis can have a significant impact on the quality of life of patients with PD and on the effectiveness on oral PD medications, with negative consequences for motor control. Holistic management of PD should therefore include timely and effective management of upper GI issues by utilizing both non-pharmacological and pharmacological approaches. This dual approach is key as many pharmacological strategies have limited efficacy in this setting, so non-pharmacological approaches are often the best option. Although a multidisciplinary approach to the management of GI issues in PD is ideal, resource constraints may mean this is not always feasible. In 'real-world' practice, neurologists and PD care teams often need to make initial assessments and treatment or referral recommendations for their patients with PD who are experiencing these problems. To provide guidance in these cases, this article reviews the published evidence for diagnostic and therapeutic management of dysphagia and gastroparesis, including recommendations for timely and appropriate referral to GI specialists when needed and guidance on the development of an effective management plan.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Warongporn Phuenpathom
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - K. Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Pramod Kumar Pal
- National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
10
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
11
|
Han MN, Finkelstein DI, McQuade RM, Diwakarla S. Gastrointestinal Dysfunction in Parkinson’s Disease: Current and Potential Therapeutics. J Pers Med 2022; 12:jpm12020144. [PMID: 35207632 PMCID: PMC8875119 DOI: 10.3390/jpm12020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in the gastrointestinal (GI) tract of Parkinson’s disease (PD) sufferers were first reported over 200 years ago; however, the extent and role of GI dysfunction in PD disease progression is still unknown. GI dysfunctions, including dysphagia, gastroparesis, and constipation, are amongst the most prevalent non-motor symptoms in PD. These symptoms not only impact patient quality of life, but also complicate disease management. Conventional treatment pathways for GI dysfunctions (i.e., constipation), such as increasing fibre and fluid intake, and the use of over-the-counter laxatives, are generally ineffective in PD patients, and approved compounds such as guanylate cyclase C agonists and selective 5-hyroxytryptamine 4 receptor agonists have demonstrated limited efficacy. Thus, identification of potential targets for novel therapies to alleviate PD-induced GI dysfunctions are essential to improve clinical outcomes and quality of life in people with PD. Unlike the central nervous system (CNS), where PD pathology and the mechanisms involved in CNS damage are relatively well characterised, the effect of PD at the cellular and tissue level in the enteric nervous system (ENS) remains unclear, making it difficult to alleviate or reverse GI symptoms. However, the resurgence of interest in understanding how the GI tract is involved in various disease states, such as PD, has resulted in the identification of novel therapeutic avenues. This review focuses on common PD-related GI symptoms, and summarizes the current treatments available and their limitations. We propose that by targeting the intestinal barrier, ENS, and/or the gut microbiome, may prove successful in alleviating PD-related GI symptoms, and discuss emerging therapies and potential drugs that could be repurposed to target these areas.
Collapse
Affiliation(s)
- Myat Noe Han
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - David I. Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia;
| | - Rachel M. McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence: ; Tel.: +61-3-8395-8114
| | - Shanti Diwakarla
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
12
|
O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1841-1861. [PMID: 35848035 PMCID: PMC9535602 DOI: 10.3233/jpd-223262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 06/06/2023]
Abstract
Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
Collapse
Affiliation(s)
- Chelsea O’Day
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - David Isaac Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - Rachel Mai McQuade
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
13
|
Yang X, Zhou R, Di W, He Q, Huo Q. Clinical therapeutic effects of probiotics in patients with constipation associated with Parkinson disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27705. [PMID: 34871259 PMCID: PMC8568397 DOI: 10.1097/md.0000000000027705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Constipation is the most predominant symptom of Parkinson disease (PD), preceding the occurrence of motor symptoms in some patients, leading to reduced quality of life (QOL). The general approaches for the treatment have some side effects, but probiotics are live or attenuated microorganisms attributed to ameliorating constipation effects. Moreover, as treatments are generally well tolerated and side effects are scarce, there is room for further research. Therefore this work aims at investigating the clinical effectiveness and safety of probiotics for constipation in PD. METHODS Published RCTs will be retrieved by searching Medline, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), VIP, Wan Fang database, and China Biology Medicine Database (complete bowel movement), which will be searched from establishment of the database to October 10, 2021. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines are used to design this protocol. RevMan V.5.3 software will be used for meta-analysis, risk of bias will be assessed by the Cochrane Collaboration tool and the collected evidence will be narratively synthesized. We will also perform a meta-analysis to pool estimates from studies considered to be homogenous. Subgroup analyses will be based on intervention or overall bias. CONCLUSION The meta-analysis will assess the effectiveness and safety of using probiotics to treat and heal the constipation of PD. ETHICS AND DISSEMINATION Ethics approval is unrequired. REGISTRATION NUMBER CRD42021276215.
Collapse
|
14
|
Abstract
Advanced Parkinson disease (PD) is associated with treatment-related motor fluctuations and reduced ability to perform activities of daily living. Progression of non-motor symptoms and medication-induced adverse effects complicate focused approach to motor symptom management, frequently accelerating reduced quality of life. It is thus critical for clinicians to consider disease progression versus therapeutic contributions when balancing management decisions. Such an approach requires careful recognition of inflection points resulting from therapeutic decisions and should prompt consideration of reduced pharmacologic burden and increased reliance on non-pharmacologic strategies in advanced disease. The successful approach to advanced PD requires a multidisciplinary effort focused on improving the patient's and family's quality of life, sometimes requiring sacrifice of motor symptom benefit. Here, we emphasize management strategies in advanced PD, focusing on the need to balance the therapeutic approach across advancing motor symptoms, progressive non-motor features, and potential pharmacologic adverse effects.
Collapse
Affiliation(s)
- Helen Hwang
- Department of Neurology, 7548Washington University School of Medicine, St Louis, MO, USA
| | - Scott A Norris
- Department of Neurology, 7548Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, 7548Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Shen T, Yue Y, He T, Huang C, Qu B, Lv W, Lai HY. The Association Between the Gut Microbiota and Parkinson's Disease, a Meta-Analysis. Front Aging Neurosci 2021; 13:636545. [PMID: 33643026 PMCID: PMC7907649 DOI: 10.3389/fnagi.2021.636545] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/11/2023] Open
Abstract
Patients with Parkinson's disease (PD) were often observed with gastrointestinal symptoms, which preceded the onset of motor symptoms. Neuropathology of PD has also been found in the enteric nervous system (ENS). Many studies have reported significant PD-related alterations of gut microbiota. This meta-analysis was performed to evaluate the differences of gut microbiota between patients with PD and healthy controls (HCs) across different geographical regions. We conducted a systematic online search for case-control studies detecting gut microbiota in patients with PD and HCs. Mean difference (MD) and 95% confidence interval (CI) were calculated to access alterations in the abundance of certain microbiota families in PD. Fifteen case-control studies were included in this meta-analysis study. Our results showed significant lower abundance levels of Prevotellaceae (MD = -0.37, 95% CI = -0.62 to -0.11), Faecalibacterium (MD = -0.41, 95% CI: -0.57 to -0.24), and Lachnospiraceae (MD = -0.34, 95% CI = -0.59 to -0.09) in patients with PD compared to HCs. Significant higher abundance level of Bifidobacteriaceae (MD = 0.38, 95%; CI = 0.12 to 0.63), Ruminococcaceae (MD = 0.58, 95% CI = 0.07 to 1.10), Verrucomicrobiaceae (MD = 0.45, 95% CI = 0.21 to 0.69), and Christensenellaceae (MD = 0.20, 95% CI = 0.07 to 0.34) was also found in patients with PD. Thus, shared alterations of certain gut microbiota were detected in patients with PD across different geographical regions. These PD-related gut microbiota dysbiosis might lead to the impairment of short-chain fatty acids (SCFAs) producing process, lipid metabolism, immunoregulatory function, and intestinal permeability, which contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting He
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Huang
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Boyi Qu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wen Lv
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sun BH, Wang T, Li NY, Wu Q, Qiao J. Clinical features and relative factors of constipation in a cohort of Chinese patients with Parkinson's disease. World J Gastrointest Pharmacol Ther 2021; 12:21-31. [PMID: 33564494 PMCID: PMC7844575 DOI: 10.4292/wjgpt.v12.i1.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Constipation as a most common non-motor symptom of Parkinson's disease (PD), has a higher prevalence compared to the general population. The etiologies of constipation in PD are diverse. In addition to physical weakness and other factors of disease, the lifestyles and eating habits are also important factors. Therefore, the prevalence and influencing factors of constipation may vary among different populations.
AIM To determine the prevalence of constipation and analyze relative factors in a cohort of Chinese patients with PD.
METHODS All the patients diagnosed with PD according to the movement disorders society criteria were consecutively collected by a self-developed questionnaire. Rome III diagnostic criteria were used to assess functional constipation and Wexner score was used to estimate the severity of constipation. Non-motor symptoms (NMS) were assessed with the non-motor symptoms assessment scale (NMSS). Unified Parkinson's disease Rating Scale III (UPDRS III) was used to evaluate the severity of motor symptoms. The modified Hoehn-Yahr stage was used to evaluate the severity of PD. Cognitive function was assessed using Montreal cognitive assessment (MoCA). Depression and anxiety were rated with the Hamilton depression scale (HAMD) and the Hamilton anxiety scale (HAMA). Quality of life was assessed using the Parkinson’s disease Questionnaire-39 items (PDQ-39).
RESULTS Of 166 patients enrolled, 87 (52.41%) were accompanied with constipation, and 30 (34.48%) experienced constipation for 6.30 ± 5.06 years before motor symptoms occurred. Age, Hoehn-Yahr stage, disease duration, levodopa medication times, incidence of motor complications, the scores of UPDRS total, UPDRS III, NMSS, HAMD, HAMA, and PDQ-39 in the constipation group were higher than those in the non-constipation group (P < 0.05), but there was no difference in the scores of MoCA, clinical types, or medications between the two groups (P > 0.05). There was a higher incidence of depression in patients with constipation (P < 0.05), but there were no difference in the incidence of anxiety and cognitive impairment between the two groups (P > 0.05). As Hoehn-Yahr stages increased, the severity of constipation increased (P < 0.05), but not the incidence of constipation (P > 0.05). Pearson correlation analysis showed that constipation was moderately positively correlated with age, Hoehn-Yahr stage, and scores of NMSS, UPDRS III, UPDRS total, PDQ-39, HAMD, and HAMA (r = 0.255, 0.172, 0.361, 0.194, 0.221, 0.237, 0.238, and 0.207, P < 0.05). Logistic regression analysis showed that only NMSS score was an independent risk factor for constipation (P < 0.001).
CONCLUSION Our findings confirm that constipation has a relatively high frequency in patients with PD. PD patients with constipation have a higher incidence of depression, which leads to worse quality of life.
Collapse
Affiliation(s)
- Bai-Hua Sun
- Department ofNeurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Department of Neurology, Xi'an Third Hospital, Xi'an 710021, Shaanxi Province, China
| | - Tao Wang
- Department ofNeurology, the Shaanxi Sengong Hospital, Xi'an 710300, Shaanxi Province, China
| | - Nian-Ying Li
- Department ofNeurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qiong Wu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jin Qiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
17
|
Gastrointestinal dysfunction in the synucleinopathies. Clin Auton Res 2020; 31:77-99. [PMID: 33247399 DOI: 10.1007/s10286-020-00745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Interest in gastrointestinal dysfunction in Parkinson's disease has blossomed over the past 30 years and has generated a wealth of investigation into this non-motor aspect of the disorder, research that has encompassed its pathophysiology, its clinical features, and its impact on quality of life. The question of gastrointestinal dysfunction in the other synucleinopathies has not received nearly as much attention, but information and knowledge are growing. In this review, the current knowledge, controversies, and gaps in our understanding of the pathophysiology of gastrointestinal dysfunction in Parkinson's disease and the other synucleinopathies will be addressed, and extended focus will be directed toward the clinical problems involving saliva management, swallowing, gastric emptying, small intestinal function, and bowel function that are so problematic in these disorders.
Collapse
|
18
|
Choi J, Lee J, Cho JW, Koh S, Yang YS, Yoo D, Shin C, Kim HT. Double-Blind, Randomized, Placebo-Controlled Trial of DA-9701 in Parkinson's Disease: PASS-GI Study. Mov Disord 2020; 35:1966-1976. [PMID: 32761955 PMCID: PMC7754502 DOI: 10.1002/mds.28219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/17/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES This study aimed to assess the efficacy of DA-9701 on gastrointestinal symptom-related quality of life in patients with Parkinson's disease on stable dopaminergic medications. METHODS This multicenter, double-blind, placebo-controlled, phase 4 trial included a total of 144 patients with Parkinson's disease with gastrointestinal dysfunctions based on predefined criteria. Participants were randomized to take either DA-9701 or placebo for 4 weeks, and then both groups were administered DA-9701 for an additional 8 weeks while antiparkinsonian medications were unchanged. The primary outcome measure was gastrointestinal symptoms and related quality-of-life changes assessed on the Korean Nepean dyspepsia index after 4 and 12 weeks of therapy. We also evaluated the impact of DA-9701 therapy on parkinsonian motor symptoms at each time point. RESULTS The gastrointestinal symptom-related quality-of-life score significantly improved in the DA-9701-treated group compared with the placebo-treated group after 4weeks (adjusted P = 0.012 by linear mixed effect model analysis). The overall gastrointestinal symptom and dyspepsia sum scores improved at 12 weeks after intervention in the DA-9701-first treated group (adjusted P = 0.002 and 0.014, respectively) and also in the placebo-first treated group (adjusted P = 0.019 and 0.039) compared with the baseline. Parkinsonian motor severity was not significantly affected by DA-9701 treatment in both groups at 4 and 12 weeks after intervention. There were no drug-related serious adverse events throughout the trial. CONCLUSIONS DA-9701 therapy improved gastrointestinal symptom-related quality of life, and 12 weeks of daily administration can relieve the overall severity of gastrointestinal symptoms in patients with Parkinson's disease without affecting motor symptoms. (Clinical trial identifier: NCT02775591.) © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ji‐Hyun Choi
- Department of Neurology, Seoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoul National University College of MedicineSeoulSouth Korea
| | - Jee‐Young Lee
- Department of Neurology, Seoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoul National University College of MedicineSeoulSouth Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
| | - Seong‐Beom Koh
- Department of NeurologyKorea University Guro HospitalSeoulSouth Korea
| | - Young Soon Yang
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | - Dalla Yoo
- Department of NeurologyKyung Hee University HospitalSeoulSouth Korea
| | - Cheol‐Min Shin
- Division of Gastroenterology, Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hee Tae Kim
- Department of NeurologyHanyang University Medical CenterSeoulSouth Korea
| |
Collapse
|
19
|
Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 2020; 17:673-685. [PMID: 32737460 DOI: 10.1038/s41575-020-0339-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The classic view portrays Parkinson disease (PD) as a motor disorder resulting from loss of substantia nigra pars compacta dopaminergic neurons. Multiple studies, however, describe prodromal, non-motor dysfunctions that affect the quality of life of patients who subsequently develop PD. These prodromal dysfunctions comprise a wide array of gastrointestinal motility disorders including dysphagia, delayed gastric emptying and chronic constipation. The histological hallmark of PD - misfolded α-synuclein aggregates that form Lewy bodies and neurites - is detected in the enteric nervous system prior to clinical diagnosis, suggesting that the gastrointestinal tract and its neural (vagal) connection to the central nervous system could have a major role in disease aetiology. This Review provides novel insights on the pathogenesis of PD, including gut-to-brain trafficking of α-synuclein as well as the newly discovered nigro-vagal pathway, and highlights how vagal connections from the gut could be the conduit by which ingested environmental pathogens enter the central nervous system and ultimately induce, or accelerate, PD progression. The pathogenic potential of various environmental neurotoxicants and the suitability and translational potential of experimental animal models of PD will be highlighted and appraised. Finally, the clinical manifestations of gastrointestinal involvement in PD and medications will be discussed briefly.
Collapse
|
20
|
Kerry RG, Das G, Golla U, Del Pilar Rodriguez-Torres M, Shin H, Patra JK. Engineered probiotic and prebiotic nutraceutical supplementations in combating non-communicable disorders: A review. Curr Pharm Biotechnol 2020; 23:72-97. [PMID: 33050862 DOI: 10.2174/1389201021666201013153142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Nutritional supplementations are a form of nutrition sources that may help in improving health complexities throughout the life span of a person. Under the umbrella of food supplementations, nutraceuticals are products extracted from edible sources that provide medical benefits along with primary nutritional value, these can be considered as functional foods. These nutraceutical supplementations are also evidenced in altering the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD] and Multiple sclerosis [MS]) and metabolic disorder (Type-II Diabetes, Obesity and non-alcoholic fatty liver disease). Even the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) and bronchopulmonary dysplasia, etc. could also be lessened up by providing proper nutrition. Molecular perceptive of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. The pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways coupled with the above mentioned non-communicable diseases are briefly described. Lastly, an overall introduction to the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks are also emphasized in this paper.
Collapse
Affiliation(s)
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326. Korea
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA 17033. United States
| | - Maria Del Pilar Rodriguez-Torres
- Laboratorio de Ondas de Choque (LOCH), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus UNAM Juriquilla Boulevard Juriquilla no. 3001, Santiago de Querétaro, Qro., C.P. 76230. Mexico
| | - HanSeung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi 10326. Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326. Korea
| |
Collapse
|
21
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, Gesquiere I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci 2020; 147:105280. [DOI: 10.1016/j.ejps.2020.105280] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
23
|
Mozaffari S, Nikfar S, Daniali M, Abdollahi M. The pharmacological management of constipation in patients with Parkinson's disease: a much-needed relief. Expert Opin Pharmacother 2020; 21:701-707. [PMID: 32037901 DOI: 10.1080/14656566.2020.1726319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Constipation is common in patients with Parkinson's disease (PD). Due to the considerable negative outcomes of constipation, significant efforts have been made to prevent and manage chronic constipation in these patients. AREAS COVERED Herein, the authors review some of the known pathophysiological causes for slow gastrointestinal (GI) transit in PD patients and the different pharmacological options. All relevant clinical and experimental data found through online databases were included. Bulking agents, osmotic and stimulant laxatives, chloride channel activators, ghrelin agonists, 5-HT4 receptor agonists, and probiotics are some of the proposed medicinal agents. of the authors further review the evidence on alpha-synuclein and botulinum neurotoxin in these patients. It should be noted, however, that some of these interventions are required to be further validated. EXPERT OPINION Reduction of GI transit and dysfunction of the anorectum is obvious in PD, affecting the incidence of constipation and thus, quality of life (QOL). Furthermore, due to an inadequate and delayed absorption of oral anti PD medications, dose adjustments and changes in the route of administration are recommended.
Collapse
Affiliation(s)
- Shilan Mozaffari
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran
| | - Shekoufeh Nikfar
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
24
|
Olanow CW, Poewe W, Rascol O, Stocchi F. From OFF to ON—Treating OFF Episodes in Parkinson’s Disease. Neurology 2020. [DOI: 10.17925/usn.2020.16.suppl.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Parkinson’s disease (PD), OFF episodes continue to present a serious burden for patients, and their effective management remains a substantial unmet clinical need. Understanding of the pathophysiology of OFF episodes has advanced in recent years, providing valuable insights for improved treatments. OFF episodes generally appear 3–5 years after starting levodopa treatment, but can begin much earlier. They are characterized by motor symptoms (including tremor, rigidity, slowness, incoordination, and weakness) and are almost always associated with some non-motor symptoms (including psychological symptoms, pain, urinary problems, swallowing difficulties, and shortness of breath). In PD, higher doses of levodopa are associated with increased risk of motor and non-motor complications, which are notable limitations for longterm therapy. Their occurrence is associated with intermittent levodopa delivery and consequent fluctuating plasma levels. These issues can be offset using lower levodopa doses where possible, incremental dose increases, and combinations of levodopa with other pharmacological agents. OFF episodes in PD can be caused by gastroparesis and/or by Helicobacter pylori infection, which delays delivery of levodopa. These issues can be addressed using new formulations for continuous intrajejunal administration. In addition, pen injector, intranasal, and inhaled dosing systems have been studied and may provide relief via non-intestinal routes. Other approaches include deep-brain stimulation, which is effective but is restricted by costs and potential adverse events. This report presents the highlights of a satellite symposium held at the 14th International Conference on Alzheimer’s & Parkinson’s Diseases (AD/PD™ 2019), Lisbon, Portugal, which discussed the nature of OFF episodes in PD, associated risk factors and the potential of current and future treatments to effectively manage them and increase ON time.
Collapse
|
25
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
26
|
Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's disease. Behav Pharmacol 2019. [PMID: 29543651 DOI: 10.1097/fbp.0000000000000389] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The factors that trigger the pathophysiology of Parkinson's disease (PD) are unknown. However, it is suggested that environmental factors, such as exposure to pesticides, play an important role, in addition to genetic predisposition and aging. Early signs of PD can appear in the gastrointestinal (GI) tract and in the olfactory system, preceding the onset of motor impairments by many years. The present study assessed the effects of oral rotenone administration (30 mg/kg) in inducing GI and olfactory dysfunctions associated with PD in mice. Here we show that rotenone transiently increased myeloperoxidase activity within 24 h of administration. Leucocyte infiltration in the colon, associated with histological damage and disrupted GI motility, were observed following treatment with rotenone for 7 days. Moreover, 7 days of treatment with rotenone disrupted olfactory discrimination in mice without affecting social recognition ability. The presence of specific deficits in olfactory function occurred with a concomitant decrease in tyrosine hydroxylase-positive neurons and an increase in serotonin (5-hydroxytryptamine) turnover in the olfactory bulb. These findings suggest that in Swiss mice, exposure to rotenone induces GI and olfactory dysfunction involving immunological and neurotransmitter alterations, similar to early signs of PD. This provides further evidence for the involvement of the gut-brain axis in PD.
Collapse
|
27
|
Hurt CS, Rixon L, Chaudhuri KR, Moss-Morris R, Samuel M, Brown RG. Barriers to reporting non-motor symptoms to health-care providers in people with Parkinson's. Parkinsonism Relat Disord 2019; 64:220-225. [PMID: 31036430 DOI: 10.1016/j.parkreldis.2019.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Non-motor symptoms (NMS) are common in Parkinson's disease (PD) and cause significant distress. A high rate of non-declaration of NMS by patients to healthcare providers (HCP) means that many NMS remain untreated. Current understanding of the factors preventing disclosure of NMS to HCPs is limited. The present study aimed to i) further assess the prevalence of NMS and associated distress, ii) establish current rates of NMS reporting across a range of sources, and iii) explore overall and any symptom specific barriers to help-seeking for NMS. METHODS 358 PD patients completed a cross-sectional survey of NMS severity, reporting and barriers to help-seeking. A series of Generalised Estimating Equations were used to determine whether barriers were symptom specific. RESULTS A mean of 10.5 NMS were reported by each patient. Rates of non-reporting of NMS ranged from 15 to 72% of those experiencing distressing symptoms. The most commonly reported barriers to help-seeking were acceptance of symptoms; lack of awareness that a symptom was associated with PD, and belief that no effective treatments were available. Symptom specific barriers were found for sexual dysfunction (embarrassment), unexplained pain and urinary problems (belief about lack of treatment availability). CONCLUSION A diverse range of barriers prevent PD patients reporting NMS to HCPs and these barriers differ between NMS. The study provides the foundations for developing interventions to increase reporting by targeting individual NMS. Increasing rates of help-seeking for NMS by patients to their Parkinson's healthcare providers will increase appropriate clinical care which may improve quality of life and well-being.
Collapse
Affiliation(s)
- Catherine S Hurt
- Centre for Health Services Research, School of Health Sciences, City, University of London, EC1R 1UW, London, UK.
| | - Lorna Rixon
- Centre for Health Services Research, School of Health Sciences, City, University of London, EC1R 1UW, London, UK.
| | - K Ray Chaudhuri
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, Denmark Hill, SE5 8AF, London, UK; King's College Hospital NHS Foundation Trust, National Parkinson's Foundation International Centre of Excellence, Denmark Hill, London, SE5 9RS, UK.
| | - Rona Moss-Morris
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, Denmark Hill, SE5 8AF, London, UK.
| | - Mike Samuel
- King's College Hospital NHS Foundation Trust, National Parkinson's Foundation International Centre of Excellence, Denmark Hill, London, SE5 9RS, UK; East Kent Hospitals University NHS Foundation Trust, Ashford, Kent, TN24 0LZ, UK.
| | - Richard G Brown
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, Denmark Hill, SE5 8AF, London, UK; South London and Maudsley NHS Foundation Trust, London, SE5 8AZ, UK.
| |
Collapse
|
28
|
Wong J, Chopra J, Chiang LLW, Liu T, Ho J, Wu WKK, Tse G, Wong SH. The Role of Connexins in Gastrointestinal Diseases. J Mol Biol 2019; 431:643-652. [PMID: 30639409 DOI: 10.1016/j.jmb.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Gap junctions are hexagonal arrays of protein molecules in the plasma membrane and were first described in Mauthner cell synapses of goldfish. They form pathways for coupling between cells, allowing passive, electrotonic spread of ions and also passage of larger molecules such as amino acids and nucleotides. They are expressed in both excitable and non-excitable tissues. Each gap junction is made of two connexons, which are hexameric proteins of the connexin subunit. In this review, the roles that connexins play in gastrointestinal motility, the mechanisms of altered connexin expression leading to inflammatory bowel disease, gastrointestinal infections, and gastrointestinal symptoms in autistic spectrum disorder are discussed in detail.
Collapse
Affiliation(s)
- Jeremy Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Jasmine Chopra
- Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, PR China; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, PR China; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, PR China.
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
29
|
Daud DB, McDonald C. Medical and surgical care for patients with Parkinson's disease. Br J Hosp Med (Lond) 2018; 79:C162-C166. [PMID: 30418822 DOI: 10.12968/hmed.2018.79.11.c162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniyal B Daud
- NIHR Academic Clinical Fellow, Health Education England North East, Newcastle upon Tyne NE15 8NY
| | - Claire McDonald
- Consultant Physician, Department of Geriatrics, Queen Elizabeth Hospital, Gateshead and Honorary Clinical Lecturer, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
30
|
DA-9701 on gastric motility in patients with Parkinson's disease: A randomized controlled trial. Parkinsonism Relat Disord 2018; 54:84-89. [PMID: 29705555 DOI: 10.1016/j.parkreldis.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To evaluate the effect of DA-9701, a novel prokinetic drug, on gastric motility evaluated by magnetic resonance imaging in patients with Parkinson's disease (PD). METHODS Forty PD patients were randomly allocated to receive either domperidone or DA-9701. Their gastric functions were evaluated using magnetic resonance imaging before and after 4-week treatment period. Information on levodopa daily dose, disease duration, and Unified PD Rating Scale scores was collected. In 18 patients (domperidone: 9, DA-9701: 9), plasma levodopa concentrations were determined. Primary outcome was assessed by a one-sided 95% confidence interval to show non-inferiority of DA-9701 vs. domperidone with a pre-determined non-inferiority margin of -10%. RESULTS Thirty-eight participants (19 men and 19 women; mean age, 67.1 years) completed the study protocol (domperidone: DA-9701 = 19:19). Gastric emptying rate at 120 min (2-hr GER) was comparable between the 2 groups; it was not correlated with levodopa daily dose or disease duration or Unified PD Rating Scale scores (all p > 0.05). DA-9701 was not inferior to domperidone in changes of 2-hr GERs before and after the treatment (absolute difference, 4.0 %; one-sided 95% confidence interval, - 3.7 to infinity). However, a significant increase in 2-hr GER was observed only in DA-9701 group (54.5% and 61.8%, before and after treatment, respectively, p < 0.05). Plasma levodopa concentration showed an insignificant but increasing trend in DA-9701 group. There were neither adverse reactions nor deteriorations of parkinsonian symptoms observed in the study participants. CONCLUSION DA-9701 can be used for the patients with PD to enhance gastric motility without aggravating PD symptoms (ClinicalTrials.gov number: NCT03022201).
Collapse
|
31
|
Palma JA, Kaufmann H. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 2018; 33:372-390. [PMID: 29508455 PMCID: PMC5844369 DOI: 10.1002/mds.27344] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Bruce-Keller AJ, Salbaum JM, Berthoud HR. Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biol Psychiatry 2018; 83:214-223. [PMID: 29031410 PMCID: PMC5859957 DOI: 10.1016/j.biopsych.2017.08.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
Abstract
There has been an explosion of interest in the study of microorganisms inhabiting the gastrointestinal tract (gut microbiota) and their impact on host health and physiology. Accumulating data suggest that altered communication between gut microbiota and host systems could participate in disorders such as obesity, diabetes mellitus, and autoimmune disorders as well as neuropsychiatric disorders, including autism, anxiety, and major depressive disorders. The conceptual development of the microbiome-gut-brain axis has facilitated understanding of the complex and bidirectional networks between gastrointestinal microbiota and their host, highlighting potential mechanisms through which this environment influences central nervous system physiology. Communication pathways between gut microbiota and the central nervous system could include autonomic, neuroendocrine, enteric, and immune systems, with pathology resulting in disruption to neurotransmitter balance, increases in chronic inflammation, or exacerbated hypothalamic-pituitary-adrenal axis activity. However, uncertainty remains regarding the generalizability of controlled animal studies to the more multifaceted pattern of human pathophysiology, especially with regard to the therapeutic potential for neuropsychiatric health. This narrative review summarizes current understanding of gut microbial influence over physiological function, with an emphasis on neurobehavioral and neurological impairment based on growing understanding of the gut-brain axis. Experimental and clinical data regarding means of therapeutic manipulation of gut microbiota as a novel treatment option for mental health are described, and important knowledge gaps are identified and discussed.
Collapse
Affiliation(s)
- Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana.
| | - J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
33
|
Wollmer E, Klein S. A review of patient-specific gastrointestinal parameters as a platform for developing in vitro models for predicting the in vivo performance of oral dosage forms in patients with Parkinson’s disease. Int J Pharm 2017; 533:298-314. [DOI: 10.1016/j.ijpharm.2017.08.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
|
34
|
Triadafilopoulos G, Gandhy R, Barlow C. Pilot cohort study of endoscopic botulinum neurotoxin injection in Parkinson's disease. Parkinsonism Relat Disord 2017; 44:33-37. [PMID: 28847681 DOI: 10.1016/j.parkreldis.2017.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/12/2017] [Accepted: 08/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastrointestinal symptoms, such as dysphagia, postprandial bloating, and defecatory straining are common in Parkinson's Disease (PD) and they impact quality of life. Endoscopic botulinum neurotoxin (BoNT) injection has been used in the treatment of dysphagia, gastroparesis and chronic anismus. AIMS To examine the feasibility, safety and efficacy of endoscopically delivered BoNT injection to distal esophagus, pylorus or anal canal aiming at relieving regional gastrointestinal symptoms in patients with PD. METHODS This is a retrospective open cohort pilot study to assess the clinical response to endoscopic BoNT injection on selected PD patients with symptoms and identifiable abnormalities on high-resolution manometry and wireless motility capsule, to generate early uncontrolled data on feasibility, tolerability, safety and efficacy. Baseline symptoms and response to therapy were assessed by questionnaires. RESULTS Fourteen PD patients (10 M:4 F), mean age 73 (range: 62-93) were treated. Three patients had esophageal Botox for ineffective esophageal motility (IEM) (n = 1), esophago-gastric junction outlet obstruction (EGJOO) & IEM (n = 1), and diffuse esophageal spasm (DES) (n = 1). Nine patients were treated with pyloric BoNT injection for gastroparesis with mean gastric transit time of 21.2 h; range 5.2-44.2 h. Two patients received anal Botox for defecatory dyssynergia ((Type I) (n = 1) and overlap (slow-transit and dyssynergic) constipation (n = 1). Endoscopic BoNT injection (100-200 units) was well tolerated and there were no significant adverse events. CONCLUSIONS Endoscopic BoNT injection to esophagus, pylorus or anal canal is safe, well-tolerated and leads to symptomatic improvement that lasts up to several months. The procedure can be repeated as needed and combined with other therapies.
Collapse
Affiliation(s)
- George Triadafilopoulos
- Stanford Multidimensional Program for Innovation and Research in the Esophagus (S-MPIRE), Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Rita Gandhy
- The Parkinson's Institute and Clinical Center, Sunnyvale, CA, USA
| | - Carrolee Barlow
- The Parkinson's Institute and Clinical Center, Sunnyvale, CA, USA
| |
Collapse
|
35
|
Rousseaux MWC, Shulman JM, Jankovic J. Progress toward an integrated understanding of Parkinson's disease. F1000Res 2017; 6:1121. [PMID: 28751973 PMCID: PMC5510019 DOI: 10.12688/f1000research.11820.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.
Collapse
Affiliation(s)
- Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA.,Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA
| |
Collapse
|