1
|
Wang F, Huang P, Lin S, Dai L, Lin Z, Pan Y, Zhang C, Sun B, Wu Y, Li D. Anterior capsulotomy combined with subthalamic nucleus deep brain stimulation for tardive dystonia. J Psychiatr Res 2024; 176:148-154. [PMID: 38865864 DOI: 10.1016/j.jpsychires.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been reported as a therapy option for the motor dysfunction of severe tardive dystonia (TD). The major psychiatric diseases, however, are contraindications to DBS treatment in TD patients. METHODS Six severe, medically refractory TD patients undergoing bilateral anterior capsulotomy combined with bilateral subthalamic nucleus (STN)-DBS treatment were studied retrospectively at two time points: pre-operation, and 1-3 years post-operation. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to assess the dystonia and disability. Depressive, anxiety, psychiatric symptoms, and Quality of Life (QoL) were evaluated using the 17-item Hamilton Depression Scale (HAMD-17), the 14-item Hamilton Anxiety Scale (HAMA-14), the Positive and Negative Syndrome Scale (PANSS), and 36-item Short-Form Health Survey (SF-36), respectively. RESULTS After receiving the combination treatment for 25 ± 11.6 months (range, 12-41 months), significant clinical symptom improvements were reported in TD patients. BFMDRS motor and disability scores were ameliorated by 78.5 ± 32.0% (p = 0.031) and 76.5 ± 38.6% (p = 0.031), respectively. The HAMD-17 and HAMA-14 scores were reduced by 60.3 ± 27.9% (p = 0.007) and 60.0 ± 24.6% (p = 0.009), respectively. Furthermore, the PANSS scores of the comorbidity schizophrenia TD patients decreased by 58.1 ± 6.0% (p = 0.022), and the QoL improved by 59.7 ± 14.1% (SF-36, p = 0.0001). During the research, there were no notable adverse effects or problems. CONCLUSION Bilateral anterior capsulotomy combined with bilateral STN-DBS may be an effective and relatively safe treatment option for severe TD comorbid with major psychiatric disorders.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Contributed equally to this Research, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Contributed equally to this Research, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Aihemaitiniyazi A, Zhang H, Hu Y, Li T, Liu C. Quality of life outcomes after deep brain stimulation in acquired dystonia: a systematic review and meta-analysis. Neurol Sci 2024; 45:467-476. [PMID: 37816931 PMCID: PMC10791872 DOI: 10.1007/s10072-023-07106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Dystonia is a condition that affects the ability to control the movement and function of the body's muscles. It can cause not only physical problems, but also mental problems, resulting in impaired health-related quality of life (HRQoL). However, the effect of deep brain stimulation on quality of life in acquired dystonia remains unclear. METHODS We conducted a systematic literature review from January 2000 to October 2022,determined the eligible studies, and performed a meta-analysis of HRQoL outcomes based on the Short-Form Health Survey-36 (SF-36) after DBS to evaluate the effects of DBS on physical and mental QoL. RESULTS A total of 14 studies met the inclusion criteria and were systematically reviewed. A comprehensive meta-analysis was performed for 9 studies that reported physical and psychological data or physical component summary (PCS), or mental component summary (MCS) for SF-36. The mean (SD) age at DBS implantation was 34.29 (10.3) years, and the follow-up period after implantation was 2.21 (2.80) years. The random effects model meta-analysis revealed that both physical and mental domains of the SF-36 improved following DBS. There was no statistically significant difference between the physical domains (effect size=1.34; p<0.0001) and the mental domains (effect size=1.38; p<0.0001). CONCLUSION This is the first meta-analysis that demonstrates significant benefits in HRQoL following DBS in patients with acquired dystonia. There were significant improvements in both physical QoL and mental QoL.
Collapse
Affiliation(s)
| | - Huawei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Aviation General Hospital, China Medical University, Beijing, 100012, China
| | - Tiemin Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Changqing Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Chongqing Sanbo Jiangling Hospital, Chongqing, China.
| |
Collapse
|
3
|
Onder H, Kertmen H, Comoglu S. Illustration of the Dramatic and Dynamic Efficacy of Chronic GPi-DBS Therapy in a Patient with Tardive Dyskinesia/Dystonia. Ann Indian Acad Neurol 2024; 27:90-92. [PMID: 38495233 PMCID: PMC10941891 DOI: 10.4103/aian.aian_799_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 03/19/2024] Open
Affiliation(s)
- Halil Onder
- Department of Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery Clinic, Etlik City Hospital, Ankara, Turkey
| | - Selcuk Comoglu
- Department of Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Costa O, Varanda S, Carneiro G, Rodrigues AM. Clinical Evolution of Tardive Cervical Dystonia from Antecollis to Retrocollis. Cureus 2023; 15:e38565. [PMID: 37284375 PMCID: PMC10239545 DOI: 10.7759/cureus.38565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Tardive dystonia occurs after exposure, over months to years, to antipsychotics and other drugs that block dopaminergic receptors. Anterocollis is a rare form of cervical dystonia which is usually disabling for the patient. Here, we present the case of a 61-year-old woman with Alzheimer's dementia diagnosed eight years ago who was previously medicated with antipsychotics. Two years before admission, she was medicated with olanzapine. She presented to the emergency room with a sustained flexion posture of the neck that was difficult to feed. She had a marked and fixed anterocollis and severe akathisia. After the administration of propofol to perform computerized tomography, the abnormal posture disappeared. Subsequently, she was started on biperiden without improvement. One week later, olanzapine was suspended, and she was progressively started on propranolol, trihexyphenidyl, and tetrabenazine. Cervical posture improved, but two weeks later, she presented with a left laterocollis, which allowed feeding, and improvement of akathisia. We present a case of tardive dystonia supported by the beginning of dystonia five months after olanzapine administration and improvement after its suspension. The coexistence of degenerative pathology is a risk factor for dystonia, which often persists despite the suspension of the causative agent. Therefore, non-pharmacological treatment and approach with antipsychotics with a better profile of extrapyramidal effects should be preferred in patients with dementia.
Collapse
Affiliation(s)
| | - Sara Varanda
- Neurology Department, Hospital de Braga, Braga, PRT
| | | | | |
Collapse
|
5
|
Szczakowska A, Gabryelska A, Gawlik-Kotelnicka O, Strzelecki D. Deep Brain Stimulation in the Treatment of Tardive Dyskinesia. J Clin Med 2023; 12:1868. [PMID: 36902655 PMCID: PMC10003252 DOI: 10.3390/jcm12051868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Tardive dyskinesia (TD) is a phenomenon observed following the predominantly long-term use of dopamine receptor blockers (antipsychotics) widely used in psychiatry. TD is a group of involuntary, irregular hyperkinetic movements, mainly in the muscles of the face, eyelid, lips, tongue, and cheeks, and less frequently in the limbs, neck, pelvis, and trunk. In some patients, TD takes on an extremely severe form, massively disrupting functioning and, moreover, causing stigmatization and suffering. Deep brain stimulation (DBS), a method used, among others, in Parkinson's disease, is also an effective treatment for TD and often becomes a method of last resort, especially in severe, drug-resistant forms. The group of TD patients who have undergone DBS is still very limited. The procedure is relatively new in TD, so the available reliable clinical studies are few and consist mainly of case reports. Unilateral and bilateral stimulation of two sites has proven efficacy in TD treatment. Most authors describe stimulation of the globus pallidus internus (GPi); less frequent descriptions involve the subthalamic nucleus (STN). In the present paper, we provide up-to-date information on the stimulation of both mentioned brain areas. We also compare the efficacy of the two methods by comparing the two available studies that included the largest groups of patients. Although GPi stimulation is more frequently described in literature, our analysis indicates comparable results (reduction of involuntary movements) with STN DBS.
Collapse
Affiliation(s)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
6
|
Badarny S, Nassar R, Badarny Y. Tardive Syndrome Is a Mysterious Phenomenon with Different Clinical Manifestations-Review. J Clin Med 2023; 12:jcm12041498. [PMID: 36836033 PMCID: PMC9967615 DOI: 10.3390/jcm12041498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Tardive syndrome (TS) refers to persistent hyperkinetic, hypokinetic, and sensory complaints appearing after chronic neuroleptics and other dopamine receptor-blocking agents (DRBAs). It is defined as involuntary movements, often rhythmic, choreiform, or athetoid, involving the tongue, face, extremities, and sensory urges such as akathisia and lasts for a few weeks. TS develops in association with neuroleptic medication usage for a few months at least. There is usually a delay between the initiation of the causative drug and the onset of abnormal movements. However, it was soon noted that TS can also develop early, even days or weeks after DRBAs begin. However, the longer the exposure, the greater the risk of developing TS. Tardive dyskinesia, dystonia, akathisia, tremor, and parkinsonism are frequent phenomenologies of this syndrome.
Collapse
Affiliation(s)
- Samih Badarny
- Neurology Department, Galilee Medical Center, Nahariya 221001, Israel
- Bar Ilan Faculty of Medicine, Zafed 1311502, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| | - Rima Nassar
- Faculty of Medicine, Israel Technion, Haifa 3109601, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| | - Yazid Badarny
- Neurosurgery Department, Rambam Medical Center, Haifa 3109601, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| |
Collapse
|
7
|
Dai L, Xu W, Song Y, Huang P, Li N, Hollunder B, Horn A, Wu Y, Zhang C, Sun B, Li D. Subthalamic deep brain stimulation for refractory Gilles de la Tourette's syndrome: clinical outcome and functional connectivity. J Neurol 2022; 269:6116-6126. [PMID: 35861855 PMCID: PMC9553760 DOI: 10.1007/s00415-022-11266-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising novel approach for managing refractory Gilles de la Tourette's syndrome (GTS). The subthalamic nucleus (STN) is the most common DBS target for treating movement disorders, and smaller case studies have reported the efficacy of bilateral STN-DBS treatment for relieving tic symptoms. However, management of GTS and treatment mechanism of STN-DBS in GTS remain to be elucidated. METHODS Ten patients undergoing STN-DBS were included. Tics severity was evaluated using the Yale Global Tic Severity Scale. The severities of comorbid psychiatric symptoms of obsessive-compulsive behavior (OCB), attention-deficit/hyperactivity disorder, anxiety, and depression; social and occupational functioning; and quality of life were assessed. Volumes of tissue activated were used as seed points for functional connectivity analysis performed using a control dataset. RESULTS The overall tics severity significantly reduced, with 62.9% ± 26.2% and 58.8% ± 27.2% improvements at the 6- and 12-months follow-up, respectively. All three patients with comorbid OCB showed improvement in their OCB symptoms at both the follow-ups. STN-DBS treatment was reasonably well tolerated by the patients with GTS. The most commonly reported side effect was light dysarthria. The stimulation effect of STN-DBS might regulate these symptoms through functional connectivity with the thalamus, pallidum, substantia nigra pars reticulata, putamen, insula, and anterior cingulate cortices. CONCLUSIONS STN-DBS was associated with symptomatic improvement in severe and refractory GTS without significant adverse events. The STN is a promising DBS target by stimulating both sensorimotor and limbic subregions, and specific brain area doses affect treatment outcomes.
Collapse
Affiliation(s)
- Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhai Song
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai Children's Medical Center, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Yiwen Wu
- Department of Neurology, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
He W, Li C, Dong H, Shao L, Yin B, Li D, Ye L, Hu P, Zhang C, Yi W. Pallidus Stimulation for Chorea-Acanthocytosis: A Systematic Review and Meta-Analysis of Individual Data. J Mov Disord 2022; 15:197-205. [PMID: 35880382 PMCID: PMC9536914 DOI: 10.14802/jmd.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
A significant proportion of patients with chorea-acanthocytosis (ChAc) fail to respond to standard therapies. Recent evidence suggests that globus pallidus internus (GPi) deep brain stimulation (DBS) is a promising treatment option; however, reports are few and limited by sample sizes. We conducted a systematic literature review to evaluate the clinical outcome of GPi-DBS for ChAc. PubMed, Embase, and Cochrane Library databases were searched for relevant articles published before August 2021. The improvement of multiple motor and nonmotor symptoms was qualitatively presented. Improvements in the Unified Huntington’s Disease Rating Scale motor score (UHDRS-MS) were also analyzed during different follow-up periods. A multivariate linear regression analysis was conducted to identify potential predictors of clinical outcomes. Twenty articles, including 27 patients, were eligible. Ninety-six percent of patients with oromandibular dystonia reported significant improvement. GPi-DBS significantly improved the UHDRS-motor score at < 6 months (p < 0.001) and ≥ 6 months (p < 0.001). The UHDRS-motor score improvement rate was over 25% in 75% (15/20 cases) of patients at long-term follow-up (≥ 6 months). The multiple linear regression analysis showed that sex, age at onset, course of disease, and preoperative movement score had no linear relationship with motor improvement at long-term follow-up (p > 0.05). GPi-DBS is an effective and safe treatment in most patients with ChAc, but no reliable predictor of efficacy has been found. Oromandibular dystonia-dominant patients might be the best candidates for GPi-DBS.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenhui Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongjuan Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Bilateral subthalamic nucleus deep brain stimulation for refractory isolated cervical dystonia. Sci Rep 2022; 12:7678. [PMID: 35538160 PMCID: PMC9090754 DOI: 10.1038/s41598-022-11841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Subthalamic nucleus (STN) deep brain stimulation (DBS) has been proven to be an alternative target choice for refractory isolated cervical dystonia (CD). However, assessments of its short and long-term safety, efficacy, and sustained effectiveness have been limited to few reports. Here, we evaluated nine consecutive refractory isolated CD patients who underwent bilateral STN DBS and accepted to short and long-term follow-up in this retrospective study. Seven time points were used to see the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores (pre-operation [baseline], 1, 3, 6, 12, 24 months post-operation and last follow-up) to assess improvement of dystonic symptoms. The 36-item Short-Form General Health Survey (SF-36) scores obtained at pre-operation and last follow-up to assess the changes in quality of life. All patients tolerated surgery well and acquired observable clinical benefits from STN DBS therapy. All patients achieved a considerable improvement in quality of life at the last follow-up. The hardware-related adverse events can be tolerated and the stimulation-related adverse events can be ameliorated by programming. Our data support the idea that bilateral STN DBS is a safety and effective method for the treatment of refractory isolated CD, with persistent and remarkable improvement in both movement and quality of life.
Collapse
|
10
|
Liu Y, Zhang Q, Wang J, Liu J, Yang W, Yan X, Ouyang Y, Yang H. Both subthalamic and pallidal deep brain stimulation are effective for GNAO1-associated dystonia: three case reports and a literature review. Ther Adv Neurol Disord 2022; 15:17562864221093507. [PMID: 35509770 PMCID: PMC9058460 DOI: 10.1177/17562864221093507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the G-protein subunit alpha o1 (GNAO1) gene have recently been shown to be involved in the pathogenesis of early infantile epileptic encephalopathy and movement disorders. The clinical manifestations of GNAO1-associated movement disorders are highly heterogeneous. However, the genotype-phenotype correlations in this disease remain unclear, and the treatments for GNAO1-associated movement disorders are still limited. Objective The objective of this study was to explore diagnostic and therapeutic strategies for GNAO1-associated movement disorders. Methods This study describes the cases of three Chinese patients who had shown severe and progressive dystonia in the absence of epilepsy since early childhood. We performed genetic analyses in these patients. Patients 1 and 2 underwent globus pallidus internus (GPi) deep brain stimulation (DBS) implantation, and Patient 3 underwent subthalamic nucleus (STN) DBS implantation. In addition, on the basis of a literature review, we summarized and discussed the clinical characteristics and outcomes after DBS surgery for all reported patients with GNAO1-associated movement disorders. Results Whole-exome sequencing (WES) analysis revealed de novo variants in the GNAO1 gene for all three patients, including a splice-site variant (c.724-8G > A) in Patients 1 and 3 and a novel heterozygous missense variant (c.124G > A; p. Gly42Arg) in Patient 2. Both GPi and STN DBS were effective in improving the dystonia symptoms of all three patients. Conclusion DBS is effective in ameliorating motor symptoms in patients with GNAO1-associated movement disorders, and both STN DBS and GPi DBS should be considered promptly for patients with sustained refractory GNAO1-associated dystonia.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wuyang Yang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuejing Yan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yi Ouyang
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Haibo Yang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
11
|
Xiong NX, Zhou YX. Letter to the Editor. Patient complaints. J Neurosurg 2022; 136:1211-1212. [PMID: 35366643 DOI: 10.3171/2021.8.jns212055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yi-Xuan Zhou
- 1Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Inggas MAM, Dianata DAI, Situmeang RFV, Wahjoepramono EJ, Kaido T. Long-term Outcome of Deep Brain Stimulation in Intralaminar Thalamus for Refractory Tourette Syndrome: A Case Report. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Tourette syndrome (TS) is a neurobehavioral disease that has onset at an early age around 5–7 years old. This disease affects 0.3–0.8% of young age population. With criteria diagnosis at least one vocal and two motor tics beginning before 18 years old. The symptoms of tics remain unusual from a social point of view, thus making it difficult for patients to evolve their professional life and education level. We present a case report of a young male patient with refractory TS with a Yale Global Tic Severity Scale (YGTSS) score of 88 out of 100; he has experienced remarkable improvement after undergoing a deep brain stimulation (DBS) procedure.
CASE REPORT: A 23-year-old male came to our neurosurgery outpatient clinic who had had a history of TS since 8 years ago. He had facial and jumping-type tics. Lately, his jumping movements cannot be controlled, with increasing frequency and intensity. The maximum tic-free interval is only 30 min. On 1st-time evaluation in the neurosurgery outpatient clinic, he scored 88 out 0f 100 on the YGTSS even after medication treatment, repetitive transcranial magnetic stimulation, and behavioral therapies. The DBS procedure was carried out in November 2018 with targets on the bilateral intralaminar nuclei of thalamus (centromedian nucleus). The result is convincing, with decrease of YGTSS score until 14 after 3 years evaluation postsurgery.
CONCLUSION: After performing DBS targeting the bilateral thalamus (central thalamus nucleus), the severity of tic was dramatically reduced. The result is pleasing to the patient as they can resume activity in public and return to college. Case reports regarding the treatment of refractory TS with DBS are still rare in Indonesia. To the best of our knowledge, this is the first such report with long-term follow-up in South East Asia.
Collapse
|
13
|
Ozturk S, Temel Y, Aygun D, Kocabicak E. Deep Brain Stimulation of the Globus Pallidus Internus for Secondary Dystonia: Clinical Cases and Systematic Review of the Literature Regarding the Effectiveness of Globus Pallidus Internus versus Subthalamic Nucleus. World Neurosurg 2021; 154:e495-e508. [PMID: 34303854 DOI: 10.1016/j.wneu.2021.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a frequently applied therapy in primary dystonia. For secondary dystonia, the effects can be less favorable. We share our long-term findings in 9 patients with severe secondary dystonia and discuss these findings in the light of the literature. METHODS Patients who had undergone globus pallidus internus (GPi)-DBS for secondary dystonia were included. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores, clinical improvement rates, follow-up periods, stimulation parameters and the need for internal pulse generator replacements were analyzed. The PubMed and Google Scholar databases were searched for articles describing GPi-DBS and subthalamic nucleus (STN)-DBS only for secondary dystonia cases. Keywords were "dystonia," "deep brain stimulation," "GPi," "dystonia," "deep brain stimulation," and "STN." RESULTS A total of 9 secondary dystonia patients (5 male, 4 female) had undergone GPi-DBS with microelectrode recording in our units. The mean follow-up period was 29 months. The average BFMDRS score was 58.2 before the surgery, whereas the mean value was 36.5 at the last follow-up of the patients (mean improvement, 39%; minimum, 9%; maximum, 63%). In the literature review, we identified 264 GPi-DBS cases (mean follow-up, 19 months) in 72 different articles about secondary dystonia. The mean BFMDRS improvement rate was 52%. In 146 secondary dystonia cases, reported in 19 articles, STN-DBS was performed. The average follow-up period was 20 months and the improvement in BFMDRS score was 66%. CONCLUSIONS Although GPi-DBS has favorable long-term efficacy and safety in the treatment of patients with secondary dystonia, STN seems a promising target for stimulation in patients with secondary dystonia. Further studies including a large number of patients, longer follow-up periods, and more homogenous patients are necessary to establish the optimal target for DBS in the management of secondary dystonias.
Collapse
Affiliation(s)
- Sait Ozturk
- Department of Neurosurgery, School of Medicine, Fırat University, Elazig, Turkey.
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dursun Aygun
- Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Ersoy Kocabicak
- Department of Neurosurgery, Ondokuz Mayıs University, Samsun, Turkey; Neuromodulation Center, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
14
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
15
|
Kim HJ, Jeon B. Arching deep brain stimulation in dystonia types. J Neural Transm (Vienna) 2021; 128:539-547. [PMID: 33740122 DOI: 10.1007/s00702-021-02304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
Although medical treatment including botulinum toxic injection is the first-line treatment for dystonia, response is insufficient in many patients. In these patients, deep brain stimulation (DBS) can provide significant clinical improvement. Mounting evidence indicates that DBS is an effective and safe treatment for dystonia, especially for idiopathic and inherited isolated generalized/segmental dystonia, including DYT-TOR1A. Other inherited dystonia and acquired dystonia also respond to DBS to varying degrees. For Meige syndrome (craniofacial dystonia), other focal dystonia, and some rare inherited dystonia, further evidences are still needed to evaluate the role of DBS. Because short disease duration at DBS surgery and absence of fixed musculoskeletal deformity are associated with better outcome, DBS should be considered as early as possible when indicated after careful evaluation including genetic work-up. This review will focus on the factors to be considered in DBS for patients with dystonia and the outcome of DBS in the different types of dystonia.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
16
|
Zhang C, Sun B. Deep brain stimulation 'probably' works on patients with tardive syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2021-326028. [PMID: 33722818 DOI: 10.1136/jnnp-2021-326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Chencheng Zhang
- Neurosurgery Department, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Bomin Sun
- Neurosurgery Department, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
17
|
He W, Li H, Lai Y, Wu Y, Wu Y, Ramirez-Zamora A, Yi W, Zhang C. Weight Change After Subthalamic Nucleus Deep Brain Stimulation in Patients With Isolated Dystonia. Front Neurol 2021; 12:632913. [PMID: 33716933 PMCID: PMC7944092 DOI: 10.3389/fneur.2021.632913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment method for advanced Parkinson's disease (PD) and isolated dystonia and provides marked improvement of major motor symptoms. In addition, non-motor effects have been reported including weight gain (WG) in patients with PD after STN-DBS. However, it is still unclear whether patients with isolated dystonia also experience WG. Methods: Data from 47 patients with isolated dystonia who underwent bilateral STN-DBS surgery between October 2012 and June 2019 were retrospectively collected. The severity of dystonia was assessed via the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Changes in the body mass index (BMI) and BFMDRS score were analyzed using paired Student's t-tests. Regression analysis was performed to identify factors that affected the BMI after surgery. Results: Postoperative WG was observed in 78.7% of patients. The percentage of overweight and obese patients increased from 25.5% (before STN-DBS) to 48.9% (at the last follow-up). The mean BMI and mean percentage change in BMI increased by 1.32 ± 1.83 kg/m2 (P < 0.001) and 6.28 ± 8.34%, respectively. BMI increased more in female than in male patients. At the last follow-up, BFMDRS movement and disability scores improved by 69.76 ± 33.23% and 65.66 ± 31.41%, respectively (both P < 0.001). The final regression model analysis revealed that sex and preoperative BMI alone were independently associated with BMI change (P < 0.05). Conclusions: STN-DBS is associated with postoperative WG with patients with isolated dystonia. WG is more prominent in female patients and is associated with preoperative weight but not with the efficacy of STN-DBS on motor symptoms.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongxia Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhao Wu
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adolfo Ramirez-Zamora
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Krause P, Koch K, Gruber D, Kupsch A, Gharabaghi A, Schneider GH, Kühn AA. Long-term effects of pallidal and thalamic deep brain stimulation in myoclonus dystonia. Eur J Neurol 2021; 28:1566-1573. [PMID: 33452690 DOI: 10.1111/ene.14737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Observational study to evaluate long-term effects of deep brain stimulation (DBS) of the globus pallidus internus (GPi) and the ventral intermediate thalamic nucleus (VIM) on patients with medically refractory myoclonus dystonia (MD). BACKGROUND More recently, pallidal as well as thalamic DBS have been applied successfully in MD but long-term data are sparse. METHODS We retrospectively analyzed a cohort of seven MD patients with either separate (n = 1, VIM) or combined GPi- DBS and VIM-DBS (n = 6). Myoclonus, dystonia and disability were rated at baseline (BL), short-term (ST-FU) and long-term follow-up (LT-FU) using the United Myoclonus Rating Scale, Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Tsui rating scale, respectively. Quality of life (QoL) and mood were evaluated using the SF-36 and Beck Depression Inventory questionnaires, respectively. RESULTS Patients reached a significant reduction of myoclonus at ST-FU (62% ± 7.3%; mean ± SE) and LT-FU (68% ± 3.4%). While overall motor BFMDRS changes were not significant at LT-FU, patients with GPi-DBS alone responded better and predominant cervical dystonia ameliorated significantly up to 54% ± 9.7% at long-term. Mean disability scores significantly improved by 44% ± 11.4% at ST-FU and 58% ± 14.8% at LT-FU. Mood and QoL remained unchanged between 5 and up to 20 years postoperatively. No serious long-lasting stimulation-related adverse events were observed. CONCLUSIONS We present a cohort of MD patients with very long follow-up of pallidal and/or thalamic DBS that supports the GPi as the favourable stimulation target in MD with safe and sustaining effects on motor symptoms (myoclonus>dystonia) and disability.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Kristin Koch
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Doreen Gruber
- Kliniken Beelitz, Movement Disorder Clinic, Beelitz-Heilstätten, Germany
| | - Andreas Kupsch
- Department of Neurology & Stereotactic Neurosurgery, University Medicine of Magdeburg, Magdeburg, Germany
| | | | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
19
|
Parameters for subthalamic deep brain stimulation in patients with dystonia: a systematic review. J Neurol 2021; 269:197-204. [PMID: 33385242 DOI: 10.1007/s00415-020-10372-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Deep brain stimulation (DBS) is used for treating dystonia, commonly targeting the subthalamic nucleus (STN). Optimal stimulation parameters are required to achieve satisfying results. However, recommended parameters for STN-DBS remain to be identified. In this review, we aimed to assess the optimal stimulation parameters by analyzing previously published STN-DBS data of patients with dystonia. METHODS We examined the STN-DBS stimulation parameters used in studies on dystonia selected on the PubMed/Medline database. RESULTS Of the 86 publications retrieved from the PubMed/Medline database, we included 24, which consisted of data from 94 patients and 160 electrodes. Overall, the following average stimulation parameters were observed: amplitude, 2.59 ± 0.67 V; pulse width, 83.87 ± 34.70 μs; frequency, 142.08 ± 37.81 Hz. The average improvement rate was 64.72 ± 24.74%. The improvement rate and stimulation parameters were linearly dependent. The average improvement rate increased by 3.58% at each 10-Hz increase in frequency. In focal and segmental dystonia, the improvement rate and stimulation parameters were linearly dependent. The improvement rate increased by 6.06% and decreased by 2.14% at each 10-Hz increase in frequency and pulse width, respectively. Seventeen publications (83 patients) mentioned stimulation-related adverse effects, including dyskinesia (17), depression (8), transient dysarthria (5), weight gain (4), transient dysphasia (3), transient paresthesia (2), and sustained hyperkinesia (2). CONCLUSIONS The optimal stimulation parameter for STN-DBS varies across patients. Our findings may be useful for DBS programming based on the specific dystonia subtypes, especially for patients with focal and segmental dystonia.
Collapse
|
20
|
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication following chronic exposure to centrally acting dopamine receptor antagonists, mainly of the class of antipsychotics drugs. New generations of antipsychotic drugs reduced its mean prevalence to 20%, but it continues to mar the drug experience and social integration in a significant fraction of patients. The underlying molecular cascade remains elusive, explaining in part why TD management is so often difficult. Protocol variations between experimental laboratories and inter-species differences in the biological response to antipsychotic drugs have added layers of complexity. The traditional dopamine D2 receptor supersensitivity hypothesis was revisited in an experimental nonhuman primate model. Findings in the striatum revealed a strong upregulation of D3, not D2, receptors specific to dyskinetic animals, and indirect evidence suggestive of a link between overactivation of glycogen synthase kinase-3β signaling and TD. New effective vesicular monoamine transporter type 2 inhibitors alleviating TD have been approved in the USA. They were integrated to an emerging stepwise treatment algorithm for troublesome TD, which also includes consideration for changes in the current antipsychotic drug regimen and recognition of potentially aggravating factors such as anticholinergic co-medications. These advances may benefit TD.
Collapse
|
21
|
Drug-induced dyskinesias, can they be prevented? CURRENT PROBLEMS OF PSYCHIATRY 2020. [DOI: 10.2478/cpp-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Dyskinesia is a symptom complex in the form of involuntary, repetitive movements of lips, lower jaw, tongue, less often the trunk and limbs. Despite the use of newer drugs in treatment neuroleptics, dyskinesia has not ceased to be a clinical problem.
Method: The work is based on a research review for which the Google Scholar database was used as well PubMed. The search range was limited to 2008-2020. We have included descriptive publications tardive dyskinesia only as a consequence of antipsychotic medications.
Material: We present the use of tetrabenazine analogues, deep brain stimulation, neuroleptics, benzodiazepines and botulinum toxin in late-suffering patients drug-induced dyskinesias, which may indicate an improvement in your health.
Discussion: The first method of treating tardive dyskinesia are withdrawal antipsychotic medications, but for many patients this is impossible. Valbenazine and Deep Brain Stimulation are the most effective in treating Tardive Dyskinesia.
Conclusions: There are not enough studies with the highest reliability to create unequivocal recommendations in the treatment of drug-induced tardive dyskinesia.
Collapse
|
22
|
Abstract
Tardive syndrome (TS) is an iatrogenic, often persistent movement disorder caused by drugs that block dopamine receptors. It has a broad phenotype including movement (orobuccolingual stereotypy, dystonia, tics, and others) and nonmotor features (akathisia and pain). TS has garnered increased attention of late because of the Food and Drug Administration approval of the first therapeutic agents developed specifically for this purpose. This paper will begin with a discussion on pathogenesis, clinical features, and epidemiology. However, the main focus will be treatment options currently available for TS including a suggested algorithm based on current evidence. Recently, there have been significant advances in TS therapy, particularly with the development of 2 new vesicular monoamine transporter type 2 inhibitors for TS and with new data on the efficacy of deep brain stimulation. The discussion will start with switching antipsychotics and the use of clozapine monotherapy which, despite the lack of higher-level evidence, should be considered for the treatment of psychosis and TS. Anti-dyskinetic drugs are separated into 3 tiers: 1) vesicular monoamine transporter type 2 inhibitors, which have level A evidence, are approved for use in TS and are recommended first-choice agents; 2) drugs with lower level of evidence for efficacy including clonazepam, Ginkgo biloba, and amantadine; and 3) drugs that have the potential to be beneficial, but currently have insufficient evidence including levetiracetam, piracetam, vitamin B6, melatonin, baclofen, propranolol, zolpidem, and zonisamide. Finally, the roles of botulinum toxin and surgical therapy will be examined. Current therapies, though improved, are symptomatic. Next steps should focus on the prevention and reversal of the pathogenic process.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, Georgia, 30329, USA.
| |
Collapse
|
23
|
Wang N, Wang K, Wang Q, Fan S, Fu Z, Zhang F, Wang L, Meng F. Stimulation-Induced Dyskinesia After Subthalamic Nucleus Deep Brain Stimulation in Patients With Meige Syndrome. Neuromodulation 2020; 24:286-292. [PMID: 32964635 DOI: 10.1111/ner.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Deep brain stimulation of the subthalamic nucleus (STN-DBS) is increasingly used to treat Meige syndrome (MS) and markedly improves symptoms. Stimulation-induced dyskinesia (SID), which adversely affects surgical outcomes and patient satisfaction, may, however, occur in some patients. This study attempts to explore possible causes of SID. MATERIALS AND METHODS Retrospectively collected clinical data on 32 patients who underwent STN-DBS between October 2016 and April 2019 were analyzed. Clinical outcomes were assessed pre- and post-surgery, using the Burke-Fahn-Marsden dystonia rating scale (BFMDRS). Patients were divided into a dyskinesia group and a non-dyskinesia group, according to whether or not they experienced persistent SID during follow-up. The coordinates of the active contacts were calculated from post-operative computerized tomography or magnetic resonance imaging, using the inter-commissural line as a reference. At final follow-up, the main stimulatory parameters for further study included pulse width, voltage, and frequency. RESULTS At final follow-up (mean = 16.3 ± 7.2 months), MS patients had improved BFMDRS total scores compared with pre-surgical scores (mean improvement = 79.0%, p < 0.0001). The mean improvement in BFMDRS total scores in the dyskinesia (n = 10) and non-dyskinesia (n = 22) groups were 81.6 ± 8.8% and 77.9 ± 14.2%, respectively. The mean minimum voltage to induce dyskinesia was 1.7 ± 0.3 V. The programmed parameters of both groups were similar. When compared with the non-dyskinesia group, active stimulatory contact coordinates in the dyskinesia group were inferior (mean left side: z = -2.3 ± 1.7 mm vs. z = -1.2 ± 1.5 mm; p = 0.0282; mean right side: z = -2.7 ± 1.9 mm vs. z = -2.3 ± 1.7 mm; p = 0.0256). The x and y coordinates were similar. CONCLUSION STN-DBS is an effective intervention for MS, providing marked improvements in clinical symptoms; SID may, however occur in the subsequent programming control process. Comparing patients with/without dyskinesia, the active contacts were located closer to the inferior part of the STN in patients with dyskinesia, which may provide an explanation for the dyskinesia.
Collapse
Affiliation(s)
- Ning Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kailiang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Shiying Fan
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Zonghui Fu
- Department of Functional Neurosurgery, Aviation General Hospital, Beijing, China
| | - Feng Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Lin Wang
- Department of Functional Neurosurgery, Aviation General Hospital, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Tambirajoo K, Furlanetti L, Samuel M, Ashkan K. Subthalamic Nucleus Deep Brain Stimulation in Post-Infarct Dystonia. Stereotact Funct Neurosurg 2020; 98:386-398. [DOI: 10.1159/000509317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Dystonia secondary to cerebral infarcts presents months to years after the initial insult, is usually unilateral and causes significant morbidity. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is established as the most frequent target in the management of the dystonic symptoms. We report our experience with subthalamic nucleus (STN) DBS in 3 patients with post-infarct dystonia, in whom GPi DBS was not confidently possible due to the presence of striatal infarcts. Two patients had unilateral STN DBS implantation, whereas the third patient had bilateral STN DBS implantation for bilateral dystonic symptoms. Prospectively collected preoperative and postoperative functional assessment data including imaging, medication and neuropsychology evaluations were analyzed with regard to symptom improvement. Median follow-up period was 38.3 months (range 26–43 months). All patients had clinically valuable improvements in dystonic symptoms and pain control despite variable improvements in the Burke-Fahn-Marsden dystonia rating scores. In our series, we have demonstrated that STN DBS could be an alternative in the management of post-infarct dystonia in patients with abnormal striatal anatomy which precludes GPi DBS. A multidisciplinary team-based approach is essential for patient selection and management.
Collapse
|
25
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
26
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
27
|
|
28
|
Lin S, Wu Y, Li H, Zhang C, Wang T, Pan Y, He L, Shen R, Deng Z, Sun B, Ding J, Li D. Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia. J Neurosurg 2020; 132:721-732. [PMID: 30849756 DOI: 10.3171/2018.12.jns181927] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/03/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgical procedures involving deep brain stimulation (DBS) of the globus pallidus internus (GPi) or subthalamic nucleus (STN) are well-established treatments for isolated dystonia. However, selection of the best stimulation target remains a matter of debate. The authors' objective was to compare the effectiveness of DBS of the GPi and the STN in patients with isolated dystonia. METHODS In this matched retrospective cohort study, the authors searched an institutional database for data on all patients with isolated dystonia who had undergone bilateral implantation of DBS electrodes in either the GPi or STN in the period from January 30, 2014, to June 30, 2017. Standardized assessments of dystonia and health-related quality of life using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and SF-36 were conducted before and at 1, 6, and 12 months after surgery. No patients were lost to the 6-month follow-up; 5 patients were lost to the 12-month follow-up. RESULTS Both GPi (14 patients) and STN (16 patients) stimulation produced significant improvement in dystonia and quality of life in all 30 patients found in the database search. At the 1-month follow-up, however, the percentage improvement in the BFMDRS total movement score was significantly (p = 0.01) larger after STN DBS (64%) than after GPi DBS (48%). At the 12-month follow-up, the percentage improvement in the axis subscore was significantly (p = 0.03) larger after GPi DBS (93%) than after STN DBS (83%). Also, the total amount of electrical energy delivered was significantly (p = 0.008) lower with STN DBS than with GPi DBS (124 ± 52 vs 192 ± 65 μJ, respectively). CONCLUSIONS The GPi and STN are both effective targets in alleviating dystonia and improving quality of life. However, GPi stimulation may be better for patients with axial symptoms. Moreover, STN stimulation may produce a larger clinical response within 1 month after surgery and may have a potential economic advantage in terms of lower battery consumption.
Collapse
Affiliation(s)
- Suzhen Lin
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Yiwen Wu
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Hongxia Li
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chencheng Zhang
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Wang
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yixin Pan
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lu He
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Ruinan Shen
- 1Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Zhengdao Deng
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bomin Sun
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianqing Ding
- 2Laboratory of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai; and
| | - Dianyou Li
- 3Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Xu W, Zhang C, Deeb W, Patel B, Wu Y, Voon V, Okun MS, Sun B. Deep brain stimulation for Tourette's syndrome. Transl Neurodegener 2020; 9:4. [PMID: 31956406 PMCID: PMC6956485 DOI: 10.1186/s40035-020-0183-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/05/2020] [Indexed: 01/11/2023] Open
Abstract
Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. TS usually co-occurs with one or multiple psychiatric disorders. Although behavioral and pharmacological treatments for TS are available, some patients do not respond to the available treatments. For these patients, TS is a severe, chronic, and disabling disorder. In recent years, deep brain stimulation (DBS) of basal ganglia-thalamocortical networks has emerged as a promising intervention for refractory TS with or without psychiatric comorbidities. Three major challenges need to be addressed to move the field of DBS treatment for TS forward: (1) patient and DBS target selection, (2) ethical concerns with treating pediatric patients, and (3) DBS treatment optimization and improvement of individual patient outcomes (motor and phonic tics, as well as functioning and quality of life). The Tourette Association of America and the American Academy of Neurology have recently released their recommendations regarding surgical treatment for refractory TS. Here, we describe the challenges, advancements, and promises of the use of DBS in the treatment of TS. We summarize the results of clinical studies and discuss the ethical issues involved in treating pediatric patients. Our aim is to provide a better understanding of the feasibility, safety, selection process, and clinical effectiveness of DBS treatment for select cases of severe and medically intractable TS.
Collapse
Affiliation(s)
- Wenying Xu
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Chencheng Zhang
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Wissam Deeb
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Bhavana Patel
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Yiwen Wu
- 3Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Valerie Voon
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China.,4Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael S Okun
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Bomin Sun
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| |
Collapse
|
30
|
Tsuboi T, Wong JK, Okun MS, Ramirez-Zamora A. Quality of life outcomes after deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2019; 70:82-93. [PMID: 31767450 DOI: 10.1016/j.parkreldis.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Dystonia is an incurable movement disorder which can cause not only physical but also mental problems, leading to impaired health-related quality of life (HRQoL). For patients with dystonia refractory to medical treatment, deep brain stimulation (DBS) is a well-established surgical treatment. The objective of this systematic review is to provide a better understanding of HRQoL outcomes after DBS for dystonia. A search of the literature was conducted using Medline (PubMed), Embase, and Cochrane Library databases in May 2019. HRQoL outcomes after DBS along with motor outcomes were reported in a total of 36 articles involving 610 patients: 21 articles on inherited or idiopathic isolated dystonia, 5 on tardive dystonia, 3 on cerebral palsy, 2 on myoclonus-dystonia, 1 on X-linked dystonia-parkinsonism, and 3 on mixed cohorts of different dystonia subtypes. DBS improved motor symptoms in various subtypes of dystonia. Most studies on patients with inherited or idiopathic isolated dystonia showed significant improvement in physical QoL, whereas gains in mental QoL were less robust and likely related to the complexity of associated neuropsychiatric problems. HRQoL outcomes beyond 5 years remain scarce. Although the studies on patients with other subtypes of dystonia also demonstrated improvement in HRQoL after DBS, the interpretation is difficult because of a limited number of articles with small cohorts. Most articles employed generic measures (e.g. Short Form Health Survey-36) and this highlights the critical need to develop and to utilize sensitive and disease-specific HRQoL measures. Finally, long-term HRQoL outcomes and predictors of HRQoL should also be clarified.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Factor SA, Burkhard PR, Caroff S, Friedman JH, Marras C, Tinazzi M, Comella CL. Recent developments in drug-induced movement disorders: a mixed picture. Lancet Neurol 2019; 18:880-890. [PMID: 31279747 DOI: 10.1016/s1474-4422(19)30152-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/14/2023]
Abstract
A large and ever-growing number of medications can induce various movement disorders. Drug-induced movement disorders are disabling but are often under-recognised and inappropriately managed. In particular, second generation antipsychotics, like first generation agents, are associated with potentially debilitating side-effects, most notably tardive syndromes and parkinsonism, as well as potentially fatal acute syndromes. Appropriate, evidence-based management is essential as these drugs are being prescribed to a growing population vulnerable to these side-effects, including children and elderly people. Prevention of the development of drug-induced movement disorders is an important consideration when prescribing medications that can induce movement disorders. Recent developments in diagnosis, such as the use of dopamine transporter imaging for drug-induced parkinsonism, and treatment, with the approval of valbenazine and deutetrabenazine, the first drugs indicated for tardive syndromes, have improved outcomes for many patients with drug-induced movement disorders. Future research should focus on development of safer antipsychotics and specific therapies for the different tardive syndromes and the treatment of drug-induced parkinsonism.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA.
| | - Pierre R Burkhard
- Department of Neurology, Faculty of Medicine, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Stanley Caroff
- Corporal Michael J Crescenz VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Friedman
- Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Research, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Cynthia L Comella
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To provide an update on the frequency of antipsychotic-induced tardive dyskinesia and its management in patients with schizophrenia spectrum disorders in studies published since the last systematic review in 2008. RECENT FINDINGS Recent data about antipsychotic-induced tardive dyskinesia in patients with schizophrenia underscore the superiority of newer generation antipsychotics (21%) over first-generation antipsychotics (30%) with respect to prevalence and incidence rates. Regarding recently tested management strategies, the new vesicular monoamine transporter 2 inhibitors valbenazine and deutetrabenazine have been found to be effective and may be considered as first-line pharmacotherapy for tardive dyskinesia. Owing to quality issues of randomized controlled trials and/or small sample sizes, limited and conflicting evidence remains for most treatment strategies. SUMMARY The reviewed literature reveals lower prevalence rates of antipsychotic-induced tardive dyskinesia in patients treated with newer generation compared with first-generation antipsychotics. The evidence of vesicular monoamine transporter 2 inhibitors as a first-line therapy for tardive dyskinesia is well supported by several controlled clinical trials.
Collapse
|
33
|
Li HX, He L, Zhang CC, Eisinger R, Pan YX, Wang T, Sun BM, Wu YW, Li DY. Deep brain stimulation in post-traumatic dystonia: A case series study. CNS Neurosci Ther 2019; 25:1262-1269. [PMID: 31033189 PMCID: PMC6834919 DOI: 10.1111/cns.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 11/29/2022] Open
Abstract
Aims Deep brain stimulation (DBS) has been proposed as an effective treatment for drug‐intolerant isolated dystonia, but whether it is also efficacious for posttraumatic dystonia (PTD) is unknown. Reports are few in number and have reached controversial conclusions regarding the efficacy of DBS for PTD treatment. Here, we report a case series of five PTD patients with improved clinical benefit following DBS treatment. Methods Five patients with disabling PTD underwent DBS therapy. The clinical outcomes were assessed with the Burke–Fahn–Marsden dystonia rating scale (BFMDRS) at baseline and the last follow‐up visit (at more than 12 months). Results Patients 1 and 3 received unilateral globus pallidus internus (GPi) DBS for contralateral dystonia. The subthalamic nucleus (STN) was chosen as target for patients 2 and 4, due to a lesion located in the globus pallidus. Patient 5 had an electrode in the ventral intermediate nucleus (VIM) for treating predominant tremor of left upper extremity, with unexpected improvement of focal hand dystonia. The scores of BFMDRS movement exhibited favorable improvement in all five patients at the last follow‐up, ranging from 52.4% to 78.6%. Conclusions Deep brain stimulation may be an effective and safe treatment for medically refractory PTD, but this needs to be confirmed by further studies.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Cheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert Eisinger
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Yi-Xin Pan
- Department of Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Min Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Wen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Neurodegenerative Diseases & Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-You Li
- Department of Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Post-operative electrode location and clinical efficacy of subthalamic nucleus deep brain stimulation in Meige syndrome. Parkinsonism Relat Disord 2019; 58:40-45. [DOI: 10.1016/j.parkreldis.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/07/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
|
35
|
Sienaert P, van Harten P, Rhebergen D. The psychopharmacology of catatonia, neuroleptic malignant syndrome, akathisia, tardive dyskinesia, and dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:415-428. [PMID: 31727227 DOI: 10.1016/b978-0-444-64012-3.00025-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although highly prevalent, motor syndromes in psychiatry and motor side effects of psychopharmacologic agents remain understudied. Catatonia is a syndrome with specific motor abnormalities that can be seen in the context of a variety of psychiatric and somatic conditions. The neuroleptic malignant syndrome is a lethal variant, induced by antipsychotic drugs. Therefore, antipsychotics should be used with caution in the presence of catatonic signs. Antipsychotics and other dopamine-antagonist drugs can also cause motor side effects such as akathisia, (tardive) dyskinesia, and dystonia. These syndromes share a debilitating impact on the functioning and well-being of patients. To reduce the risk of inducing these side effects, a balanced and well-advised prescription of antipsychotics is of utmost importance. Clinicians should be able to recognize motor side effects and be knowledgeable of the different treatment modalities.
Collapse
Affiliation(s)
- Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium.
| | - Peter van Harten
- Research Department, GGz Centraal Innova, Amersfoort, and Department of Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Didi Rhebergen
- Department of Psychiatry and Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Eggink H, Szlufik S, Coenen MA, van Egmond ME, Moro E, Tijssen MA. Non-motor effects of deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2018; 55:26-44. [PMID: 29945825 DOI: 10.1016/j.parkreldis.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
37
|
Macerollo A, Deuschl G. Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis. J Neurol Sci 2018; 389:55-60. [DOI: 10.1016/j.jns.2018.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
38
|
Deng Z, Pan Y, Zhang C, Zhang J, Qiu X, Zhan S, Li D, Sun B. Subthalamic deep brain stimulation in patients with primary dystonia: A ten-year follow-up study. Parkinsonism Relat Disord 2018; 55:103-110. [PMID: 29880315 DOI: 10.1016/j.parkreldis.2018.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/03/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is a promising intervention for primary dystonia; however, evidence regarding its efficacy is lacking. Thus, a long-term follow-up is indispensable. OBJECTIVE This trial was designed to examine the efficacy and consistency of subthalamic deep brain stimulation in patients with primary dystonia over the long term. METHOD This was a retrospective study involving 14 patients with primary dystonia who underwent STN-DBS and consented to a follow-up of at least 10 years. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and 36-item Short-Form General Health Survey were employed, at five time points (pre-operation [baseline], 1 month post-operation, 1 year post-operation, 5 years post-operation, and last follow-up), to assess improvement of dystonic symptoms and changes in quality of life. OUTCOMES All patients gained extensive clinical benefits from STN-DBS therapy, without experiencing serious adverse effects. Improvements of 59.0% at 1 month, 85.0% at 1 year, and 90.8% at 5 years after the operation, and up to 91.4% at the last follow-up, were demonstrated by movement evaluation with the BFMDRS. All patients achieved a substantial improvement in quality of life. CONCLUSION Subthalamic deep brain stimulation is an effective and persisting alternative to pallidal deep brain stimulation, and importantly, it is very safe even with extremely long-term chronic stimulation.
Collapse
Affiliation(s)
- Zhengdao Deng
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Qiu
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Updating the recommendations for treatment of tardive syndromes: A systematic review of new evidence and practical treatment algorithm. J Neurol Sci 2018; 389:67-75. [PMID: 29454493 DOI: 10.1016/j.jns.2018.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Management of tardive syndromes (TS) is challenging, with only a few evidence-based therapeutic algorithms reported in the American Academy of Neurology (AAN) guideline in 2013. OBJECTIVE To update the evidence-based recommendations and provide a practical treatment algorithm for management of TS by addressing 5 questions: 1) Is withdrawal of dopamine receptor blocking agents (DRBAs) an effective TS treatment? 2) Does switching from typical to atypical DRBAs reduce TS symptoms? 3) What is the efficacy of pharmacologic agents in treating TS? 4) Do patients with TS benefit from chemodenervation with botulinum toxin? 5) Do patients with TS benefit from surgical therapy? METHODS Systematic reviews were conducted by searching PsycINFO, Ovid MEDLINE, PubMed, EMBASE, Web of Science and Cochrane for articles published between 2012 and 2017 to identify new evidence published after the 2013 AAN guidelines. Articles were classified according to an AAN 4-tiered evidence-rating scheme. To the extent possible, for each study we attempted to categorize results based on the description of the population enrolled (tardive dyskinesia [TD], tardive dystonia, tardive tremor, etc.). Recommendations were based on the evidence. RESULTS AND RECOMMENDATIONS New evidence was combined with the existing guideline evidence to inform our recommendations. Deutetrabenazine and valbenazine are established as effective treatments of TD (Level A) and must be recommended as treatment. Clonazepam and Ginkgo biloba probably improve TD (Level B) and should be considered as treatment. Amantadine and tetrabenazine might be considered as TD treatment (Level C). Pallidal deep brain stimulation possibly improves TD and might be considered as a treatment for intractable TD (Level C). There is insufficient evidence to support or refute TS treatment by withdrawing causative agents or switching from typical to atypical DRBA (Level U).
Collapse
|
40
|
Meyer JM. Future directions in tardive dyskinesia research. J Neurol Sci 2018; 389:76-80. [PMID: 29433809 DOI: 10.1016/j.jns.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/02/2018] [Indexed: 02/05/2023]
Abstract
Tardive dyskinesia (TD) research is at a crossroads because of renewed interest in this syndrome following the successful development and regulatory approval of two novel vesicular monoamine transport 2 (VMAT2) inhibitors. Despite these clinical advances, significant lacunae exist in the knowledge base of TD pathophysiology, prognosis, and epidemiology. Moreover, conflicting definitions of TD as either a syndrome that encompasses a broad array of related phenomena or as a specific subset of tardive syndromes are an impediment to both clinical and basic science research, and to educational efforts targeting nonspecialist clinicians. A unique opportunity is thus presented by the enhanced focus on TD to resolve fundamental issues with regards to nomenclature and clinical criteria, thereby facilitating more sophisticated surveillance and genetic and epidemiological research into tardive movement disorders related to dopamine receptor blocking agents. The widespread use of newer antipsychotics portends that TD will remain a persistent public health issue. This article will present one view of research avenues to be explored for this neuropsychiatric condition, including those that may yield immediate therapeutic benefits by extending expert knowledge into routine clinical care situations.
Collapse
Affiliation(s)
- Jonathan M Meyer
- University of California, San Diego, United States; California Department of State Hospitals (DSH), Psychopharmacology Resource Network, United States.
| |
Collapse
|
41
|
Sarva H, Henchcliffe C. Valbenazine as the first and only approved treatment for adults with tardive dyskinesia. Expert Rev Clin Pharmacol 2018; 11:209-217. [PMID: 29338466 DOI: 10.1080/17512433.2018.1429264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Valbenazine is a selective VMAT2 inhibitor that the FDA approved in April 2017 for the specific treatment of tardive dyskinesia (TD), a movement disorder commonly caused by dopamine blocking agents. Valbenazine acts to decrease dopamine release, reducing excessive movement found in TD. Areas covered: This drug profile reviews the development of valbenazine and the clinical trials that led to its approval as the first treatment specific to TD. The literature search was performed with the PubMed online database. Expert commentary: Two clinical trials assessing the efficacy of valbenazine have shown the reduction of antipsychotic-induced involuntary movement. No life threatening adverse effects were found. Data from a 42-week extension study demonstrated sustained response.
Collapse
Affiliation(s)
- Harini Sarva
- a Parkinson's Disease and Movement Disorders Institute , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Claire Henchcliffe
- a Parkinson's Disease and Movement Disorders Institute , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| |
Collapse
|