1
|
Hassani-Marand M, Fahimi-Kashani N, Hormozi-Nezhad MR. Machine-learning assisted multiplex detection of catecholamine neurotransmitters with a colorimetric sensor array. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1123-1134. [PMID: 36756908 DOI: 10.1039/d2ay01797k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catecholamine neurotransmitters (CNs), such as dopamine (DA), epinephrine (EP), norepinephrine (NEP), and levodopa (LD), are recognized as the primary biomarkers of a variety of neurological illnesses. Therefore, simultaneous monitoring of these biomarkers is highly recommended for clinical diagnosis and treatment. In this study, a high-performance colorimetric artificial tongue has been proposed for the multiplex detection of CNs. Different aggregation behaviors of gold nanoparticles in the presence of CNs under various buffering conditions generate unique fingerprint response patterns. Under various buffering conditions, the distinct acidity constants of CNs, and consequently their predominant species at a given pH, drive the aggregation of gold nanoparticles (AuNPs). The utilization of machine learning algorithms in this design enables classification and quantification of CNs in various samples. The response profile of the array was analyzed using the linear discriminant analysis algorithm for classification of CNs. This colorimetric sensor array is capable of accurately distinguishing between individual neurotransmitters and their combinations. Partial least squares regression was also applied for quantitation purposes. The obtained analytical figures of merit (FOMs) and linear ranges of 0.6-9 μM (R2 = 0.99) for DA, 0.1-10 μM (R2 = 0.99) for EP, 0.1-9 μM (R2 = 0.99) for NEP and 1-70 μM (R2 = 0.99) for LD demonstrated the potential applicability of the developed sensor array in precise and accurate determination of CNs. Finally, the feasibility of the array was validated in human urine samples as a complex biological fluid with LODs of 0.3, 0.5, 0.2, and 1.9 μM for DA, EP, NEP, and LD, respectively.
Collapse
Affiliation(s)
- M Hassani-Marand
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - N Fahimi-Kashani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - M R Hormozi-Nezhad
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
| |
Collapse
|
2
|
Bonakdarpour B, Takarabe C. Brain Networks, Clinical Manifestations, and Neuroimaging of Cognitive Disorders: The Role of Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Other Advanced Neuroimaging Tests. Clin Geriatr Med 2023; 39:45-65. [PMID: 36404032 DOI: 10.1016/j.cger.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this article, we briefly discuss imaging modalities used in clinical settings for neuroanatomical characterization and for diagnosis of the underlying disease. We then discuss how each neuroimaging tool can be used in the context of clinical syndromes. The major underlying causes relevant to our discussion include Alzheimer disease, Lewy body disease, cerebrovascular disease, frontotemporal degeneration, autoimmune diseases, and systemic or metabolic derangements.
Collapse
Affiliation(s)
- Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine.
| | - Clara Takarabe
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
3
|
Jakobson Mo S, Axelsson J, Stiernman L, Riklund K. Validation of dynamic [ 18F]FE-PE2I PET for estimation of relative regional cerebral blood flow: a comparison with [ 15O]H 2O PET. EJNMMI Res 2022; 12:72. [PMID: 36394638 PMCID: PMC9672223 DOI: 10.1186/s13550-022-00941-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dopamine transporter (DAT) imaging is used in the diagnostic work-up in suspected parkinsonian syndromes and dementia with Lewy bodies but cannot differentiate between these syndromes, and an extra brain imaging examination of the regional cerebral blood flow (rCBF) or glucose metabolism is often needed for differential diagnosis. The requirement of two different imaging examinations is resource-consuming and inconvenient for the patients. Therefore, imaging of both cortical blood flow and DAT imaging with the same radiotracer would be more convenient and cost-effective. The aim of this study was to test whether relative regional cerebral blood flow (rCBFR) can be measured with the DAT-specific positron emission tomography (PET) tracer [18F]FE-PE2I (FE-PE2I), by validation with cerebral perfusion measured with [15O]H2O PET (H2O). METHODS The rCBFR was quantified by kinetic modeling for FE-PE2I (R1) and H2O (F). The R1 was calculated using the simplified reference tissue model, and F was calculated with a modified Koopman double-integration method. The linear relationship and intraclass correlation (ICC) between R1 and F were tested in image data derived from 29 patients with recent onset parkinsonism and 30 healthy controls. RESULTS There was a strong linear correlation across all subjects between R1 and F in the frontal, parietal, temporal, cingulate and occipital cortex as well as in the striatum (r ≥ 0.731-0.905, p < 0.001) with a good-to-excellent ICC, ranging from 0.727 to 0.943 (p < 0.001). CONCLUSIONS Our results suggest that FE-PE2I may be used as a proxy for cerebral perfusion, thus potentially serving as a radiotracer for assessment of both DAT availability and rCBFR in one single dynamic scan. This could be valuable in the differential diagnosis of parkinsonian syndromes. TRIAL REGISTRATION EUDRA-CT 2015-003045-26. Registered 23 October 2015 https://www.clinicaltrialsregister.eu/ctr-search/search?query=2015-003045-26.
Collapse
Affiliation(s)
- Susanna Jakobson Mo
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| | - Jan Axelsson
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lars Stiernman
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Dept. of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.,Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Arterial spin labeling imaging for the detection of cerebral blood flow asymmetry in patients with corticobasal syndrome. Neuroradiology 2022; 64:1829-1837. [DOI: 10.1007/s00234-022-02942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
5
|
Nakano Y, Hirano S, Kojima K, Li H, Sakurai T, Suzuki M, Tai H, Furukawa S, Sugiyama A, Yamanaka Y, Yamamoto T, Iimori T, Yokota H, Mukai H, Horikoshi T, Uno T, Kuwabara S. Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders. Mov Disord 2022; 37:1235-1244. [DOI: 10.1002/mds.28981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yoshikazu Nakano
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
- Department of Neurology Chibaken Saiseikai Narashino Hospital Narashino Japan
| | - Shigeki Hirano
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Kazuho Kojima
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
- Department of Neurology Chiba Rosai Hospital Ichihara Japan
| | - Honglinag Li
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Toru Sakurai
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Masahide Suzuki
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Hong Tai
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Shogo Furukawa
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
- Department of Neurology Japanese Red Cross Narita Hospital Narita Japan
| | - Atsuhiko Sugiyama
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Yoshitaka Yamanaka
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| | - Tatsuya Yamamoto
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
- Division of Occupational Therapy, Department of Rehabilitation Chiba Prefectural University of Health Sciences Chiba Japan
| | - Takashi Iimori
- Department of Radiology Chiba University Hospital Chiba Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology Graduate School of Medicine, Chiba University Chiba Japan
| | - Hiroki Mukai
- Department of Radiology Chiba University Hospital Chiba Japan
| | | | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology Graduate School of Medicine, Chiba University Chiba Japan
| | - Satoshi Kuwabara
- Department of Neurology Graduate School of Medicine, Chiba University Chiba Japan
| |
Collapse
|
6
|
Golan H, Volkov O, Shalom E. Nuclear imaging in Parkinson's disease: The past, the present, and the future. J Neurol Sci 2022; 436:120220. [DOI: 10.1016/j.jns.2022.120220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023]
|
7
|
Alster P, Nieciecki M, Migda B, Kutyłowski M, Madetko N, Duszyńska-Wąs K, Charzyńska I, Koziorowski D, Królicki L, Friedman A. The Strengths and Obstacles in the Differential Diagnosis of Progressive Supranuclear Palsy—Parkinsonism Predominant (PSP-P) and Multiple System Atrophy (MSA) Using Magnetic Resonance Imaging (MRI) and Perfusion Single Photon Emission Computed Tomography (SPECT). Diagnostics (Basel) 2022; 12:diagnostics12020385. [PMID: 35204476 PMCID: PMC8871165 DOI: 10.3390/diagnostics12020385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple System Atrophy—Parkinsonism Predominant (MSA-P) and Progressive Supranuclear Palsy—Parkinsonism Predominant (PSP-P) are the clinical manifestations of atypical parkinsonism. Currently, there are no efficient in vivo methods available relating to neuroimaging or biochemical analysis in the examination of these entities. Among the advanced methods available, using positron emission tomography is constrained by high cost and low accessibility. In this study the authors examined patients with two types of atypical parkinsonism—MSA-P and PSP-P, which are difficult to differentiate, especially in the early years of their development. The aim of this study was to assess whether the examination of patients in the period following the early years (3–6-year duration of symptoms) could be enhanced by perfusion single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI) or evaluation of cognitive abilities. Extended examination using MRI and perfusion SPECT showed that the evaluation of the mesencephalon/pons ratio, mesencephalic volume decrease, the Magnetic Resonance Parkinsonism Index (MRPI) and frontal perfusion should be considered more feasible than screening cognitive evaluation in MSA-P and PSP-P with a 3–6-year duration of symptoms.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
- Correspondence:
| | - Michał Nieciecki
- Department of Nuclear Medicine, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, 03-242 Warsaw, Poland;
| | - Michał Kutyłowski
- Department of Radiology, Mazovian Brodnowski Hospital, 03-242 Warsaw, Poland;
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Karolina Duszyńska-Wąs
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Ingeborga Charzyńska
- Department of Nuclear Medicine, Mazovian Brodno Hospital, 03-242 Warsaw, Poland; (I.C.); (L.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Leszek Królicki
- Department of Nuclear Medicine, Mazovian Brodno Hospital, 03-242 Warsaw, Poland; (I.C.); (L.K.)
- Department of Nuclear Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| |
Collapse
|
8
|
Oh M, Lee N, Kim C, Son HJ, Sung C, Oh SJ, Lee SJ, Chung SJ, Lee CS, Kim JS. Diagnostic accuracy of dual-phase 18F-FP-CIT PET imaging for detection and differential diagnosis of Parkinsonism. Sci Rep 2021; 11:14992. [PMID: 34294739 PMCID: PMC8298455 DOI: 10.1038/s41598-021-94040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
Delayed phase 18F-FP-CIT PET (dCIT) can assess the striatal dopamine transporter binding to detect degenerative parkinsonism (DP). Early phase 18F-FP-CIT (eCIT) can assess the regional brain activity for differential diagnosis among parkinsonism similar with 18F-FDG PET. We evaluated the diagnostic performance of dual phase 18F-FP-CIT PET (dual CIT) and 18F-FDG PET compared with clinical diagnosis in 141 subjects [36 with idiopathic Parkinson's disease (IPD), 77 with multiple system atrophy (MSA), 18 with progressive supranuclear palsy (PSP), and 10 with non-DP)]. Visual assessment of eCIT, dCIT, dual CIT, 18F-FDG and 18F-FDG PET with dCIT was in agreement with the clinical diagnosis in 61.7%, 69.5%, 95.7%, 81.6%, and 97.2% of cases, respectively. ECIT showed about 90% concordance with non-DP and MSA, and 8.3% and 27.8% with IPD and PSP, respectively. DCIT showed ≥ 88% concordance with non-DP, IPD, and PSP, and 49.4% concordance with MSA. Dual CIT showed ≥ 90% concordance in all groups. 18F-FDG PET showed ≥ 90% concordance with non-DP, MSA, and PSP, but only 33.3% concordance with IPD. The combination of 18F-FDG and dCIT yielded ≥ 90% concordance in all groups. Dual CIT may represent a powerful alternative to the combination of 18F-FDG PET and dCIT for differential diagnosis of parkinsonian disorders.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Chanwoo Kim
- Department of Nuclear Medicine, Kyung Hee University School of Medicine, Kyung Hee University Hospital At Gangdong, Seoul, Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Chong Sik Lee
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
9
|
Hu X, Sun X, Hu F, Liu F, Ruan W, Wu T, An R, Lan X. Multivariate radiomics models based on 18F-FDG hybrid PET/MRI for distinguishing between Parkinson's disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2021; 48:3469-3481. [PMID: 33829415 DOI: 10.1007/s00259-021-05325-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To construct multivariate radiomics models using hybrid 18F-FDG PET/MRI for distinguishing between Parkinson's disease (PD) and multiple system atrophy (MSA). METHODS Ninety patients (60 with PD and 30 with MSA) were randomized to training and test sets in a 7:3 ratio. All patients underwent 18F-fluorodeoxyglucose (18F-FDG) PET/MRI to simultaneously obtain metabolic images (18F-FDG), structural MRI images (T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) and T2-weighted fluid-attenuated inversion recovery (T2/FLAIR)) and functional MRI images (susceptibility-weighted imaging (SWI) and apparent diffusion coefficient). Using PET and five MRI sequences, we extracted 1172 radiomics features from the putamina and caudate nuclei. The radiomics signatures were constructed with the least absolute shrinkage and selection operator algorithm in the training set, with progressive optimization through single-sequence and double-sequence radiomics models. Multivariable logistic regression analysis was used to develop a clinical-radiomics model, combining the optimal multi-sequence radiomics signature with clinical characteristics and SUV values. The diagnostic performance of the models was assessed by receiver operating characteristic and decision curve analysis (DCA). RESULTS The radiomics signatures showed favourable diagnostic efficacy. The optimal model comprised structural (T1WI), functional (SWI) and metabolic (18F-FDG) sequences (RadscoreFDG_T1WI_SWI) with the area under curves (AUCs) of the training and test sets of 0.971 and 0.957, respectively. The integrated model, incorporating RadscoreFDG_T1WI_SWI, three clinical symptoms (disease duration, dysarthria and autonomic failure) and SUVmax, demonstrated satisfactory calibration and discrimination in the training and test sets (0.993 and 0.994, respectively). DCA indicated the highest clinical benefit of the clinical-radiomics integrated model. CONCLUSIONS The radiomics signature with metabolic, structural and functional information provided by hybrid 18F-FDG PET/MRI may achieve promising diagnostic efficacy for distinguishing between PD and MSA. The clinical-radiomics integrated model performed best.
Collapse
Affiliation(s)
- Xuehan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tingfan Wu
- GE Healthcare, Pudong New Town, No.1, Huatuo Road, Shanghai, 200000, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
10
|
Yang Y, Wei L, Hu Y, Wu Y, Hu L, Nie S. Classification of Parkinson's disease based on multi-modal features and stacking ensemble learning. J Neurosci Methods 2020; 350:109019. [PMID: 33321153 DOI: 10.1016/j.jneumeth.2020.109019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Early diagnosis of Parkinson's disease (PD) enables timely treatment of patients and helps control the course of the disease. An efficient and reliable approach is therefore needed to develop for improving the clinical ability to diagnose this disease. NEW METHOD We proposed a two-layer stacking ensemble learning framework with fusing multi-modal features in this study, for accurately identifying early PD with healthy control (HC). To begin with, we investigated relative importance of multi-modal neuroimaging (T1 weighted image (T1WI), diffusion tensor imaging (DTI)) and early clinical assessment to classify PD and HC. Next, a two-layer stacking ensemble framework was proposed: at the first layer, we evaluated advantages of these four base classifiers: support vector machine (SVM), random forests (RF), K-nearest neighbor (KNN) and artificial neural network (ANN); at the second layer, a logistic regression (LR) classifier was applied to classify PD. The performance of the proposed model was evaluated by comparing with traditional ensemble models. RESULTS The proposed method performed an accuracy of 96.88 %, a precision of 100 %, a recall of 95 % and a F1 score of 97.44 % respectively for identifying PD and HC. COMPARISON WITH EXISTING METHOD The classification results showed that the proposed model achieved a superior performance in comparison with traditional ensemble models. CONCLUSION The stacking ensemble model with efficiently and effectively integrate multiple base classifiers performed higher accuracy than each single traditional model. The method developed in this study provided a novel strategy to enhance the accuracy of diagnosis and early detection of PD.
Collapse
Affiliation(s)
- Yifeng Yang
- School of Medical Instrument & Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Ying Hu
- School of Medical Instrument & Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Wu
- School of Medical Instrument & Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Liangyun Hu
- Center for Functional Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengdong Nie
- School of Medical Instrument & Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
11
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
12
|
Murakami N, Sako W, Haji S, Furukawa T, Otomi Y, Otsuka H, Izumi Y, Harada M, Kaji R. Differences in cerebellar perfusion between Parkinson's disease and multiple system atrophy. J Neurol Sci 2019; 409:116627. [PMID: 31865188 DOI: 10.1016/j.jns.2019.116627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Objective biomarkers are required for differential diagnosis of Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). OBJECTIVE We aimed to determine if cerebellar blood flow, measured using N-isopropyl-[123I] p-iodoamphetamine single photon emission computed tomography (123I -IMP-SPECT), was useful for differentiating between PD, MSA and PSP. METHODS Twenty-four patients with PD, seventeen patients with MSA with predominant parkinsonian features (MSA-P), sixteenth patients with MSA with predominant cerebellar ataxia (MSA-C) and eight patients with PSP were enrolled. Twenty-seven normal controls' data were used for the calculation of z score. All patients underwent 123I -IMP-SPECT, and data were analyzed using a three-dimensional-stereotactic surface projection program. RESULTS Cerebellar perfusion in MSA-P (MSA-P vs PD, P = .002; MSA-P vs PSP, P < .001) and MSA-C (MSA-C vs PD, P < .001; MSA-C vs PSP, P < .001) were significantly decreased compared with PD or PSP. There was no significant difference in perfusion between PD and PSP groups (P = .061). The area under the receiver operating characteristic curve for cerebellar perfusion between MSA-P and PD was 0.858. CONCLUSION Our findings revealed that cerebellar perfusion by 123I-IMP-SPECT was useful for differentiating between PD and MSA-P.
Collapse
Affiliation(s)
- Nagahisa Murakami
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wataru Sako
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Shotaro Haji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takahiro Furukawa
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoichi Otomi
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Hideki Otsuka
- Department of Medical Imaging/Nuclear Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
13
|
Ishii K. Diagnostic imaging of dementia with Lewy bodies, frontotemporal lobar degeneration, and normal pressure hydrocephalus. Jpn J Radiol 2019; 38:64-76. [DOI: 10.1007/s11604-019-00881-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
|
14
|
Alster P, Nieciecki M, Koziorowski DM, Cacko A, Charzyńska I, Królicki L, Friedman A. Thalamic and cerebellar hypoperfusion in single photon emission computed tomography may differentiate multiple system atrophy and progressive supranuclear palsy. Medicine (Baltimore) 2019; 98:e16603. [PMID: 31348305 PMCID: PMC6708712 DOI: 10.1097/md.0000000000016603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuroimaging in the context of examining atypical parkinsonian tauopathies is an evolving matter. Positron emission tomography and single photon emission computed tomography (SPECT) bring tools, which may be reasonable in supplementary examination, however, cannot be interpreted as a criterion standard for correct diagnosis. The aim of this observational study was to assess the differentiating potential of perfusion SPECT in 3 types of atypical parkinsonisms: multiple system atrophy parkinsonian type (MSA-P), corticobasal syndrome (CBS), and progressive supranuclear palsy (PSP). The study was carried out using the comparison of standard deviations of perfusion in patients from these 3 groups. Data obtained from 10 patients with clinical diagnosis MSA-P, 14 patients with CBS and 21 patients with PSP, which were analyzed using Tukey honest significant difference post-hoc test, revealed significant differences of perfusion P < .05 between MSA-P and PSP within the cerebellum and thalamus. No significant differences between CBS and PSP were observed.
Collapse
Affiliation(s)
| | | | | | - Andrzej Cacko
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw
| | | | - Leszek Królicki
- Deparment of Nuclear Medicine, Mazovian Bródno Hospital
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
15
|
Pahuja G, Nagabhushan TN, Prasad B. Early Detection of Parkinson’s Disease by Using SPECT Imaging and Biomarkers. JOURNAL OF INTELLIGENT SYSTEMS 2019. [DOI: 10.1515/jisys-2018-0261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Precise and timely diagnosis of Parkinson’s disease is important to control its progression among subjects. Currently, a neuroimaging technique called dopaminergic imaging that uses single photon emission computed tomography (SPECT) with 123I-Ioflupane is popular among clinicians for detecting Parkinson’s disease in early stages. Unlike other studies, which consider only low-level features like gray matter, white matter, or cerebrospinal fluid, this study explores the non-linear relation between different biomarkers (SPECT + biological) using deep learning and multivariate logistic regression. Striatal binding ratios are obtained using 123I-Ioflupane SPECT scans from four brain regions which are further integrated with five biological biomarkers to increase the diagnostic accuracy. Experimental results indicate that this investigated approach can differentiate subjects with 100% accuracy. The obtained results outperform the ones reported in the literature. Furthermore, logistic regression model has been developed for estimating the Parkinson’s disease onset probability. Such models may aid clinicians in diagnosing this disease.
Collapse
Affiliation(s)
- Gunjan Pahuja
- Department of Computer Science and Engineering, JSS Academy of Technical Education, Noida 201301, India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
| | - T. N. Nagabhushan
- Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru 570006, India
| | - Bhanu Prasad
- Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
16
|
Alster P, Madetko NK, Koziorowski DM, Królicki L, Budrewicz S, Friedman A. Accumulation of Tau Protein, Metabolism and Perfusion-Application and Efficacy of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) Imaging in the Examination of Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS). Front Neurol 2019; 10:101. [PMID: 30837933 PMCID: PMC6383629 DOI: 10.3389/fneur.2019.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging in the context of examining atypical parkinsonian tauopathies is an evolving matter. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) bring tools, which may be reasonable in supplementary examination, however cannot be interpreted as a gold standard for correct diagnosis. The review presents advantages and limitations of tau radiotracers in PET, metabolic PET and perfusion SPECT. The aim of this paper is to highlight the possibilities and boundaries in the supplementary examination of tauopathic parkinsonian syndromes.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Onder H. Unusual case of idiopathic normal pressure hydrocephalus initially presenting as Parinaud's syndrome? Geriatr Gerontol Int 2019; 19:83. [PMID: 30609229 DOI: 10.1111/ggi.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Halil Onder
- Neurology Clinic, Yozgat City Hospital, Yozgat, Turkey
| |
Collapse
|
18
|
Abstract
The emerging role of molecular imaging has made possible to evaluate and quantify biochemical changes of molecular targets in specific neurochemical systems involved in movement disorders, providing neurochemical information of clinical changes before the pathological features occurred. In detail, radionuclides imaging techniques are frequently used for the in vivo study of neurotransmitter and receptor function, alterations in cerebral blood flow and metabolic activity, abnormal protein deposition, and inflammation, with a central role in molecular imaging for preclinical and clinical studies. The present chapter represents an overview of main use of single-photon emission computed tomography (SPECT) in movement disorders, with a focal attention on specific radiotracers used, recent advances in SPECT technology and reconstruction algorithm and added specific value of semiquantitative methods for images analysis. Finally, a brief paragraph is dedicated to description of SPECT/CT devices and advantages of using hybrid technology.
Collapse
|
19
|
Thobois S, Prange S, Scheiber C, Broussolle E. What a neurologist should know about PET and SPECT functional imaging for parkinsonism: A practical perspective. Parkinsonism Relat Disord 2018; 59:93-100. [PMID: 30181086 DOI: 10.1016/j.parkreldis.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
The diagnosis of a parkinsonian syndrome based on clinical criteria remains sometimes difficult, especially at disease onset. Brain or heart molecular imaging techniques (SPECT or PET) can provide a major help to improve and speed up diagnosis, influencing treatment strategies. Presynaptic dopaminergic imaging using either [18F]-Dopa PET or 123I -2β-Carbomethoxy-3β-(4-Iodophenyl)- N-(3-Fluoropropyl) Nortropane ([123I]-Ioflupane)SPECT demonstrates or rules out the presence of a dopaminergic degenerative process. This allows to distinguish Parkinson's disease, Parkinson "plus" syndromes and dementia with Lewy bodies (reduced radiotracers binding) from essential tremor, psychogenic, post-neuroleptic or vascular parkinsonisms, dopa-responsive dystonia and Alzheimer's disease (normal radiotracers binding). For differential diagnosis between Parkinson's disease and Parkinson "plus" syndromes, brain molecular imaging with [18F]-Fluorodeoxyglucose ([18F]-FDG) PET or 99mTc-HMPAO SPECT can provide useful information, whereas [18F]-Dopa PET or [123I]-Ioflupane does not separate these entities. Finally, sympathetic cardiac [123I]-Metaiodobenzylguanidine ([123I]-MIBG) scintigraphy or SPECT can help distinguishing Parkinson's disease and dementia with Lew bodies (decreased binding) from multiple system atrophy and progressive supranuclear palsy (normal binding). New radiotracers notably those targeting the pathological process itself such as Tau aggregates are under development and may provide interesting informations to delineate the different Parkinson "plus" syndromes.
Collapse
Affiliation(s)
- Stéphane Thobois
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, F-69675, Bron, France; Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Lyon, France; Univ Lyon, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, F-69921, Oullins, France.
| | - Stéphane Prange
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, F-69675, Bron, France; Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Lyon, France
| | - Christian Scheiber
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Médecine Nucléaire, Lyon, France
| | - Emmanuel Broussolle
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, F-69675, Bron, France; Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Lyon, France; Univ Lyon, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, F-69921, Oullins, France
| |
Collapse
|
20
|
Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, Schjodt‐Eriksen J, Cheng W, Fernandez‐Garcia I, Siebourg‐Polster J, Jin L, Soto J, Verselis L, Boess F, Koller M, Grundman M, Monsch AU, Postuma RB, Ghosh A, Kremer T, Czech C, Gossens C, Lindemann M. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial. Mov Disord 2018; 33:1287-1297. [PMID: 29701258 PMCID: PMC6175318 DOI: 10.1002/mds.27376] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Ubiquitous digital technologies such as smartphone sensors promise to fundamentally change biomedical research and treatment monitoring in neurological diseases such as PD, creating a new domain of digital biomarkers. OBJECTIVES The present study assessed the feasibility, reliability, and validity of smartphone-based digital biomarkers of PD in a clinical trial setting. METHODS During a 6-month, phase 1b clinical trial with 44 Parkinson participants, and an independent, 45-day study in 35 age-matched healthy controls, participants completed six daily motor active tests (sustained phonation, rest tremor, postural tremor, finger-tapping, balance, and gait), then carried the smartphone during the day (passive monitoring), enabling assessment of, for example, time spent walking and sit-to-stand transitions by gyroscopic and accelerometer data. RESULTS Adherence was acceptable: Patients completed active testing on average 3.5 of 7 times/week. Sensor-based features showed moderate-to-excellent test-retest reliability (average intraclass correlation coefficient = 0.84). All active and passive features significantly differentiated PD from controls with P < 0.005. All active test features except sustained phonation were significantly related to corresponding International Parkinson and Movement Disorder Society-Sponsored UPRDS clinical severity ratings. On passive monitoring, time spent walking had a significant (P = 0.005) relationship with average postural instability and gait disturbance scores. Of note, for all smartphone active and passive features except postural tremor, the monitoring procedure detected abnormalities even in those Parkinson participants scored as having no signs in the corresponding International Parkinson and Movement Disorder Society-Sponsored UPRDS items at the site visit. CONCLUSIONS These findings demonstrate the feasibility of smartphone-based digital biomarkers and indicate that smartphone-sensor technologies provide reliable, valid, clinically meaningful, and highly sensitive phenotypic data in Parkinson's disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Florian Lipsmeier
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Kirsten I. Taylor
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Timothy Kilchenmann
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Detlef Wolf
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Alf Scotland
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jens Schjodt‐Eriksen
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Wei‐Yi Cheng
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Ignacio Fernandez‐Garcia
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Juliane Siebourg‐Polster
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Liping Jin
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jay Soto
- Prothena Biosciences Inc.South San FranciscoCaliforniaUSA
| | - Lynne Verselis
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Frank Boess
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Martin Koller
- Prothena Biosciences Inc.South San FranciscoCaliforniaUSA
| | - Michael Grundman
- Prothena Biosciences Inc.South San FranciscoCaliforniaUSA
- Global R&D Partners, LLCSan DiegoCaliforniaUSA
| | - Andreas U. Monsch
- Felix Platter Hospital, University Center for Medicine of Aging, Memory Clinic, Basel, Switzerland; University of Basel, Faculty of PsychologyBaselSwitzerland
| | - Ronald B. Postuma
- Department of NeurologyMcGill University, Montreal General HospitalMontrealQuebecCanada
| | - Anirvan Ghosh
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Thomas Kremer
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Christian Czech
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Christian Gossens
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Michael Lindemann
- Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| |
Collapse
|
21
|
Abstract
Lewy body dementia (DLB) is a common form of cognitive impairment, accounting for 30% of dementia cases in ages over 65 years. Early diagnosis of DLB has been challenging; particularly in the context of differentiation with Parkinson’s disease dementia and other forms of dementias, such as Alzheimer’s disease and rapidly progressive dementias. Current practice involves the use of [123I]FP-CIT-SPECT, [18F]FDG PET and [123I]MIBG molecular imaging to support diagnostic procedures. Structural imaging techniques have an essential role for excluding structural causes, which could lead to a DLB-like phenotype, as well as aiding differential diagnosis through illustrating disease-specific patterns of atrophy. Novel PET molecular imaging modalities, such as amyloid and tau imaging, may provide further insights into DLB pathophysiology and may aid in early diagnosis. A multimodal approach, through combining various established techniques and possibly using novel radioligands, might further aid towards an in-depth understanding of this highly disabling disease. In this review, we will provide an overview of neuroimaging applications in patients with DLB.
Collapse
|
22
|
Brumberg J, Isaias IU. SPECT Molecular Imaging in Atypical Parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:37-65. [DOI: 10.1016/bs.irn.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|