1
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2024. [PMID: 39556446 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V Witzig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - R Pjontek
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - S K H Tan
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - J B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Jülich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - F Holtbernd
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Jülich Research Center GmbH and RWTH Aachen University, Aachen, Germany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM-4, INM-11), Jülich, Germany
| |
Collapse
|
2
|
Tröster AI. Developments in the prediction of cognitive changes following deep brain stimulation in persons with Parkinson's disease. Expert Rev Neurother 2024; 24:643-659. [PMID: 38814926 DOI: 10.1080/14737175.2024.2360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) motor symptoms that improves function and quality of life in appropriately selected patients. Because mild to moderate cognitive declines can follow DBS and impact quality of life in a minority of patients, an important consideration involves the cognitive deficit and its prediction. AREAS COVERED The author briefly summarizes cognitive outcomes from DBS and reviews in more detail the risks/predictors of post-DBS cognitive dysfunction by mainly focusing on work published between 2018 and 2024 and using comprehensive neuropsychological (NP) evaluations. Most publications concern bilateral subthalamic nucleus (STN) DBS. Comment is offered on challenges and potential avenues forward. EXPERT OPINION STN DBS is relatively safe cognitively but declines occur especially in verbal fluency and executive function/working memory. Numerous predictors and risk factors for cognitive outcomes have been identified (age and pre-operative neuropsychological status appear the most robust) but precise risk estimates cannot yet be confidently offered. Future studies should employ study center consortia, follow uniform reporting criteria (to be developed), capitalize on advances in stimulation, biomarkers, and artificial intelligence, and address DBS in diverse groups. Advances offer an avenue to investigate the amelioration of cognitive deficits in PD using neuromodulation.
Collapse
Affiliation(s)
- Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Mishra T, Kamble N, Bhattacharya A, Yadav R, Srinivas D, Pal PK. Impact of Deep Brain Stimulation on Non-Motor Symptoms in Parkinson's Disease. J Mov Disord 2024; 17:245-247. [PMID: 38475678 PMCID: PMC11082601 DOI: 10.14802/jmd.23247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024] Open
Affiliation(s)
- Tanaya Mishra
- Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Askari A, Greif TR, Lam J, Maher AC, Persad CC, Patil PG. Decline of verbal fluency with lateral superior frontal gyrus penetration in subthalamic nucleus deep brain stimulation for Parkinson disease. J Neurosurg 2022; 137:729-734. [PMID: 35090137 DOI: 10.3171/2021.11.jns211528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Verbal fluency (VF) decline is a well-recognized adverse cognitive outcome following subthalamic nucleus deep brain stimulation (STN DBS) in patients with Parkinson disease (PD). The mechanisms underlying VF decline, whether from stimulation, lesioning, or both, remain unclear. This study aims to investigate the unique effects of DBS lead trajectory on VF beyond previously reported effects of active contact location. METHODS The study population included 56 patients with idiopathic PD who underwent bilateral STN DBS. Phonemic and semantic VF scores were compared pre- and postoperatively. Features of the electrode trajectory were measured on postoperative imaging, including distance from the falx cerebri, distance from the superior frontal sulcus, and caudate nucleus penetration. The authors used t-tests, Pearson's correlation, and multiple linear regression analyses to examine the relationship between VF change and demographic, disease, and electrode trajectory variables. RESULTS The laterality of entry within the left superior frontal gyrus (SFG) predicted greater phonemic VF decline (sr2 = 0.28, p < 0.001) after controlling for active contact location. VF change did not differ by the presence of caudate nucleus penetration in either hemisphere (p > 0.05). CONCLUSIONS Lateral penetration of the SFG in the left hemisphere is associated with worsening phonemic VF and has greater explanatory power than active contact location. This may be explained by lesioning of the lateral SFG-Broca area pathway, which is implicated in language function.
Collapse
Affiliation(s)
| | - Taylor R Greif
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | | | - Amanda C Maher
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | - Carol C Persad
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Alhourani A, Wylie SA, Summers JE, Phibbs FT, Bradley EB, Neimat JS, Van Wouwe NC. Developing Predictor Models of Postoperative Verbal Fluency After Deep Brain Stimulation Using Preoperative Neuropsychological Assessment. Neurosurgery 2022; 91:256-262. [PMID: 35506958 PMCID: PMC9514727 DOI: 10.1227/neu.0000000000001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) for Parkinson disease provides significant improvement of motor symptoms but can also produce neurocognitive side effects. A decline in verbal fluency (VF) is among the most frequently reported side effects. Preoperative factors that could predict VF decline have yet to be identified. OBJECTIVE To develop predictive models of DBS postoperative VF decline using a machine learning approach. METHODS We used a prospective database of patients who underwent neuropsychological and VF assessment before both subthalamic nucleus (n = 47, bilateral = 44) and globus pallidus interna (n = 43, bilateral = 39) DBS. We used a neurobehavioral rating profile as features for modeling postoperative VF. We constructed separate models for action, semantic, and letter VF. We used a leave-one-out scheme to test the accuracy of the predictive models using median absolute error and correlation with actual postoperative scores. RESULTS The predictive models were able to predict the 3 types of VF with high accuracy ranging from a median absolute error of 0.92 to 1.36. Across all three models, higher preoperative fluency, digit span, education, and Mini-Mental State Examination were predictive of higher postoperative fluency scores. By contrast, higher frontal system deficits, age, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease scored by the patient, disease duration, and Behavioral Inhibition/Behavioral Activation Scale scores were predictive of lower postoperative fluency scores. CONCLUSION Postoperative VF can be accurately predicted using preoperative neurobehavioral rating scores above and beyond preoperative VF score and relies on performance over different aspects of executive function.
Collapse
Affiliation(s)
- Ahmad Alhourani
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Scott A. Wylie
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jessica E. Summers
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fenna T. Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elise B. Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
6
|
Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion. Brain Sci 2022; 12:brainsci12080967. [PMID: 35892408 PMCID: PMC9332267 DOI: 10.3390/brainsci12080967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Co-registration of stereotactic and preoperative magnetic resonance imaging (MRI) images can serve as an alternative for trajectory planning. However, the role of this strategy has not yet been proven by any control studies, and the trajectories of commonly used targets have not been systematically studied. The purpose of this study was to analyze the trajectories for various targets, and to assess the role of trajectories realized on fused images in preventing intracranial hemorrhage (ICH). Data from 1019 patients who underwent electrode placement for deep brain stimulation were acquired. Electrode trajectories were not planned for 396 patients, whereas trajectories were planned for 623 patients. Preoperative various MRI sequences and frame-placed MRI images were fused for trajectory planning. The patients’ clinical characteristics, the stereotactic systems, intracranial hemorrhage cases, and trajectory angles were recorded and analyzed. No statistically significant differences in the proportions of male patients, patients receiving local anesthesia, and diseases or target distributions (p > 0.05) were found between the trajectory planning group and the non-trajectory planning group, but statistically significant differences were observed in the numbers of both patients and leads associated with symptomatic ICH (p < 0.05). Regarding the ring and arc angle values, statistically significant differences were found among various target groups (p < 0.05). The anatomic structures through which leads passed were found to be diverse. Trajectory planning based on MRI fusion is a safe technique for lead placement. The electrode for each given target has its own relatively constant trajectory.
Collapse
|
7
|
Klostermann F, Ehlen F, Tiedt HO. Effects of thalamic and basal ganglia deep brain stimulation on language-related functions - Conceptual and clinical considerations. Eur J Paediatr Neurol 2022; 37:75-81. [PMID: 35149269 DOI: 10.1016/j.ejpn.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Deep Brain Stimulation (DBS) is a therapy for various neurological movement disorders. It acts predominantly on motor symptoms, but may unfold a number of mostly subtle cognitive effects. In this regard, reports on particular language-related DBS sequels are comparably frequent, but difficult to overlook, given the heterogeneity of targeted structures in the brain, treated diseases, assessment methods and results reported. Accordingly, available knowledge was organized with respect to important aspects, such as the main DBS loci and surgical versus neuromodulatory therapy actions. Current views of biolinguistic underpinnings of the reviewed data, their clinical relevance and potential implications are discussed.
Collapse
Affiliation(s)
- Fabian Klostermann
- Charité - University Medicine Berlin, Clinic for Neurology, Campus Benjamin Franklin, Germany; Berlin School of Mind and Brain, Germany.
| | - Felicitas Ehlen
- Jewish Hospital Berlin, Clinic for Psychiatry and Psychotherapy, Germany
| | - Hannes Ole Tiedt
- Charité - University Medicine Berlin, Clinic for Neurology, Campus Benjamin Franklin, Germany
| |
Collapse
|
8
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
9
|
Leimbach F, Atkinson-Clement C, Wilkinson L, Cheung C, Jahanshahi M. Dissociable effects of subthalamic nucleus deep brain stimulation surgery and acute stimulation on verbal fluency in Parkinson's disease. Behav Brain Res 2020; 388:112621. [PMID: 32353395 DOI: 10.1016/j.bbr.2020.112621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECT Verbal fluency (VF) is the cognitive test which shows the most consistent and persistent post-operative decline after subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease (PD). However, the reasons are not completely understood, and the debate has focused on two hypotheses: a surgical effect or an acute STN-DBS effect. METHODS We recruited 3 PD samples: (1) a group assessed before and after STN-DBS surgery (2) a group assessed On vs. Off STN-DBS and (3) an unoperated PD control group. All groups performed letter, category and switching category VF tasks. The total number of correct words generated were noted and measures of clustering and switching were also obtained. RESULTS We found a significant effect of STN-DBS surgery on all VF tasks which was associated with a post-operative decline in the total number of words generated, and a reduction of phonemic switching during the letter and category VF tasks, and a reduction of semantic clustering for category VF. By contrast to the effects of surgery, acute On vs. Off stimulation did not influence the number of words generated on any of the VF tasks. Acute stimulation only produced two effects on the category VF task: increased semantic cluster size and decreased number of semantic switches when STN-DBS was switched On. CONCLUSIONS This study differentiates between the effects of STN-DBS surgery and acute stimulation on VF performance. Our findings indicate that the STN-DBS effect on VF are a surgical and not an acute STN stimulation effect.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Cyril Atkinson-Clement
- Brain and Spine Institute (ICM), Movement Investigation and Therapeutics Team, Paris, France
| | - Leonora Wilkinson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-1430, United States
| | - Catherine Cheung
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|