1
|
Saft C, Burgunder JM, Dose M, Jung HH, Katzenschlager R, Priller J, Nguyen HP, Reetz K, Reilmann R, Seppi K, Landwehrmeyer GB. Differential diagnosis of chorea (guidelines of the German Neurological Society). Neurol Res Pract 2023; 5:63. [PMID: 37993913 PMCID: PMC10666412 DOI: 10.1186/s42466-023-00292-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Choreiform movement disorders are characterized by involuntary, rapid, irregular, and unpredictable movements of the limbs, face, neck, and trunk. These movements often initially go unnoticed by the affected individuals and may blend together with seemingly intended, random motions. Choreiform movements can occur both at rest and during voluntary movements. They typically increase in intensity with stress and physical activity and essentially cease during deep sleep stages. In particularly in advanced stages of Huntington disease (HD), choreiform hyperkinesia occurs alongside with dystonic postures of the limbs or trunk before they typically decrease in intensity. The differential diagnosis of HD can be complex. Here, the authors aim to provide guidance for the diagnostic process. This guidance was prepared for the German Neurological Society (DGN) for German-speaking countries. RECOMMENDATIONS Hereditary (inherited) and non-hereditary (non-inherited) forms of chorea can be distinguished. Therefore, the family history is crucial. However, even in conditions with autosomal-dominant transmission such as HD, unremarkable family histories do not necessarily rule out a hereditary form (e.g., in cases of early deceased or unknown parents, uncertainties in familial relationships, as well as in offspring of parents with CAG repeats in the expandable range (27-35 CAG repeats) which may display expansions into the pathogenic range). CONCLUSIONS The differential diagnosis of chorea can be challenging. This guidance prepared for the German Neurological Society (DGN) reflects the state of the art as of 2023.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, St. Josef-Hospital, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany.
| | - Jean-Marc Burgunder
- Department of Neurology, Schweizerisches Huntington-Zentrum, Bern University, Bern, Switzerland
| | - Matthias Dose
- Kbo-Isar-Amper-Klinikum Taufkirchen/München-Ost, Munich, Germany
| | - Hans Heinrich Jung
- Department of Neurology, University Hospital Zürich, Zurich, Switzerland
| | - Regina Katzenschlager
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Klinik Donaustadt, Vienna, Austria
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany
| | - Kathrin Reetz
- Department of Neurology, Euregional Huntington Centre Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Muenster, Germany
- Department of Radiology, Universitaetsklinikum Muenster (UKM), Westfaelische Wilhelms-University, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
2
|
Neuser S, Krey I, Schwan A, Abou Jamra R, Bartolomaeus T, Döring J, Syrbe S, Plassmann M, Rohde S, Roth C, Rehder H, Radtke M, Le Duc D, Schubert S, Bermúdez-Guzmán L, Leal A, Schoner K, Popp B. Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain. Eur J Hum Genet 2022; 30:101-110. [PMID: 34697416 PMCID: PMC8738728 DOI: 10.1038/s41431-021-00982-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Biallelic PNKP variants cause heterogeneous disorders ranging from neurodevelopmental disorder with microcephaly/seizures to adult-onset Charcot-Marie-Tooth disease. To date, only postnatal descriptions exist. We present the first prenatal diagnosis of PNKP-related primary microcephaly. Pathological examination of a male fetus in the 18th gestational week revealed micrencephaly with extracerebral malformations and thus presumed syndromic microcephaly. A recessive disorder was suspected because of previous pregnancy termination for similar abnormalities. Prenatal trio-exome sequencing identified compound heterozygosity for the PNKP variants c.498G>A, p.[(=),0?] and c.302C>T, p.(Pro101Leu). Segregation confirmed both variants in the sister fetus. Through RNA analyses, we characterized exon 4 skipping affecting the PNKP forkhead-associated (FHA) and phosphatase domains (p.Leu67_Lys166del) as the predominant effect of the paternal c.498G>A variant. We retrospectively investigated two unrelated individuals diagnosed with biallelic PNKP-variants to compare prenatal/postnatal phenotypes. Both carry the splice donor variant c.1029+2T>C in trans with a variant in the FHA domain (c.311T>C, p.(Leu104Pro); c.151G>C, p.(Val51Leu)). RNA-seq showed complex splicing for c.1029+2T>C and c.151G>C. Structural modeling revealed significant clustering of missense variants in the FHA domain with variants generating structural damage. Our clinical description extends the PNKP-continuum to the prenatal stage. Investigating possible PNKP-variant effects using RNA and structural modeling, we highlight the mutational complexity and exemplify a PNKP-variant characterization framework.
Collapse
Affiliation(s)
- Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Döring
- Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Syrbe
- Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stefan Rohde
- Department of Radiology and Neuroradiology, Klinikum Dortmund, Dortmund, Germany
| | - Christian Roth
- Department for Pediatric Radiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Helga Rehder
- Institute of Medical Genetics, Medical University Vienna, Vienna, Austria
- Institute of Pathology, Department of Fetal Pathology, Philipps University Marburg, Marburg, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San José, Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San José, Costa Rica
| | - Katharina Schoner
- Institute of Pathology, Department of Fetal Pathology, Philipps University Marburg, Marburg, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Furones García M, Ortiz Cabrera NV, Soto Insuga V, García Peñas JJ. Characteristics of epilepsy secondary to mutations in the PNKP gene. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:713-716. [PMID: 34247972 DOI: 10.1016/j.nrleng.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 10/20/2022] Open
Affiliation(s)
| | | | - V Soto Insuga
- Departamento de Neurología, Hospital Niño Jesús, Madrid, Spain
| | | |
Collapse
|
4
|
Furones García M, Ortiz Cabrera NV, Soto Insuga V, García Peñas JJ. Characteristics of epilepsy secondary to mutations of PNKP gene. Neurologia 2021; 36:S0213-4853(20)30440-0. [PMID: 33549370 DOI: 10.1016/j.nrl.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- M Furones García
- Departamento de Neurología, Hospital Niño Jesús, Madrid, España.
| | | | - V Soto Insuga
- Departamento de Neurología, Hospital Niño Jesús, Madrid, España
| | | |
Collapse
|
5
|
Garrelfs MR, Takada S, Kamsteeg EJ, Pegge S, Mancini G, Engelen M, van de Warrenburg B, Rennings A, van Gaalen J, Peters I, Weemaes C, van der Burg M, Willemsen MA. The Phenotypic Spectrum of PNKP-Associated Disease and the Absence of Immunodeficiency and Cancer Predisposition in a Dutch Cohort. Pediatr Neurol 2020; 113:26-32. [PMID: 32980744 DOI: 10.1016/j.pediatrneurol.2020.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND We aimed to expand the number of currently known pathogenic PNKP mutations, to study the phenotypic spectrum, including radiological characteristics and genotype-phenotype correlations, and to assess whether immunodeficiency and increased cancer risk are part of the DNA repair disorder caused by mutations in the PNKP gene. METHODS We evaluated nine patients with PNKP mutations. A neurological history and examination was obtained. All patients had undergone neuroimaging and genetic testing as part of the prior diagnostic process. Laboratory measurements included potential biomarkers, and, in the context of a DNA repair disorder, we performed a detailed immunologic evaluation, including B cell repertoire analysis. RESULTS We identified three new mutations in the PNKP gene and confirm the phenotypic spectrum of PNKP-associated disease, ranging from microcephaly, seizures, and developmental delay to ataxia with oculomotor apraxia type 4. Irrespective of the phenotype, alpha-fetoprotein is a biochemical marker and increases with age and progression of the disease. On neuroimaging, (progressive) cerebellar atrophy was a universal feature. No clinical signs of immunodeficiency were present, and immunologic assessment was unremarkable. One patient developed cancer, but this was attributed to a concurrent von Hippel-Lindau mutation. CONCLUSIONS Immunodeficiency and cancer predisposition do not appear to be part of PNKP-associated disease, contrasting many other DNA repair disorders. Furthermore, our study illustrates that the previously described syndromes microcephaly, seizures, and developmental delay, and ataxia with oculomotor apraxia type 4, represent the extremes of an overlapping spectrum of disease. Cerebellar atrophy and elevated serum alpha-fetoprotein levels are early diagnostic findings across the entire phenotypical spectrum.
Collapse
Affiliation(s)
- Mark R Garrelfs
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Sanami Takada
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjoert Pegge
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Alexander Rennings
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Ivo Peters
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Corry Weemaes
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michèl A Willemsen
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology, Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Gatti M, Magri S, Nanetti L, Sarto E, Di Bella D, Salsano E, Pantaleoni C, Mariotti C, Taroni F. From congenital microcephaly to adult onset cerebellar ataxia: Distinct and overlapping phenotypes in patients with PNKP gene mutations. Am J Med Genet A 2019; 179:2277-2283. [PMID: 31436889 DOI: 10.1002/ajmg.a.61339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
Abstract
Pathogenic variants in polynucleotide kinase 3'-phosphatase (PNKP) gene have been associated with two distinct clinical presentations: autosomal recessive microcephaly, seizures, and developmental delay (MCSZ; MIM 613402) and ataxia with oculomotor apraxia type 4 (AOA4; MIM 616267). More than 40 patients have been reported so far, and their clinical presentations revealed a continuum phenotypic spectrum ranging from congenital microcephaly and early-onset intractable seizures, to adult onset slowly progressive sensory-motor neuropathy and cerebellar ataxia. We describe three unrelated Italian patients with different phenotypes and novel or recurrent pathogenic variants in PNKP gene. Patient 1, homozygous for the recurrent frameshift variant (p.Thr424Glyfs*49), had an early-onset MCSZ phenotype. Late in the disease progression, cerebellar ataxia and peripheral neuropathy were recognized. Patient 2, homozygous for a frameshift variant (p.Ala429Thrfs*42), presented a phenotype partially consistent with MCSZ including microcephaly and developmental delay, but without seizures. Patient 3 is one of the oldest patients described to date and presented polyneuropathy, and cerebellar signs. Biochemical tests showed abnormalities of cholesterol, albumin, or alpha-fetoprotein plasma levels. The clinical presentation of our patients encompassed early-to-adult-onset manifestations. For these cases, the long clinical follow-up allowed an in-depth phenotypic characterization and a better delineation of the natural history of patients carrying PNKP pathogenic variants.
Collapse
Affiliation(s)
- Marta Gatti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Neurodegenerative and Neurometabolic Rare Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|