1
|
Koros C, Bougea A, Alefanti I, Simitsi AM, Papagiannakis N, Pachi I, Sfikas E, Antonelou R, Stefanis L. A Global Perspective of GBA1-Related Parkinson’s Disease: A Narrative Review. Genes (Basel) 2024; 15:1605. [PMCID: PMC11675599 DOI: 10.3390/genes15121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Parkinson’s disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase (GBA1 ) gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of GBA1 mutations in populations of different ethnic backgrounds. We reviewed articles spanning the 2000–2024 period. GBA1 -related PD has a worldwide distribution. It has long been recognized that pathogenic GBA1 mutations are particularly common in certain ethnic populations, including PD patients of Ashkenazi Jewish ancestry. Moreover, a considerable number of studies focused on European ancestry patients from Europe and North America have revealed a high proportion (up to 15%) of carriers among the PD population. GBA1 mutations also appear to play an important role in patient groups with an East Asian background, although the frequency of specific variants may differ as compared to those of European ancestry. Notably, the assessment of underrepresented populations in other parts of Asia (including India) and Latin America is in the spotlight of current research, while a variant with a newly described pathogenic mechanism has been reported in Sub-Saharan Africans. Given the importance of GBA1 mutations for PD genetics and clinical phenotype, a focused assessment of the prevalence and type of GBA1 variants in distinct ethnic populations will possibly inform ongoing PD-related clinical studies and facilitate upcoming therapeutic trials.
Collapse
Affiliation(s)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.A.); (A.M.S.); (N.P.); (I.P.); (E.S.); (R.A.); (L.S.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? NPJ Parkinsons Dis 2024; 10:201. [PMID: 39455605 PMCID: PMC11512049 DOI: 10.1038/s41531-024-00809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Previous studies have established that rare biallelic SYNJ1 mutations cause autosomal recessive parkinsonism and Parkinson's disease (PD). We analyzed 8165 PD cases, 818 early-onset-PD (EOPD, < 50 years) and 70,363 controls. Burden meta-analysis revealed an association between rare nonsynonymous variants and variants with high Combined Annotation-Dependent Depletion score (> 20) in the Sac1 SYNJ1 domain and PD (Pfdr = 0.040). A meta-analysis of EOPD patients demonstrated an association between all rare heterozygous SYNJ1 variants and PD (Pfdr = 0.029).
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Kamath SD, Phulpagar P, Holla VV, Kamble N, Yadav R, Muthusamy B, Kumar Pal P. Genetic architecture of a single cohort of 230 Indian Parkinson's Disease patients. Parkinsonism Relat Disord 2024; 129:107157. [PMID: 39378566 DOI: 10.1016/j.parkreldis.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/08/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Indian Parkinson's Disease (PD) patients are severely underrepresented in terms of genetic studies and little is known about the frequency of variants and their impact on motor and nonmotor symptoms (NMS). METHODS This retrospective cross-sectional study was conducted in PD patients undergoing treatment at a tertiary care hospital from India. Patients were advised genetic testing if they had (i) age at onset (AAO) of motor symptoms at or before 50 years (EOPD), (ii) positive family history of PD, parkinsonism or dystonia. All patients underwent whole exome sequencing and potentially pathogenic variants were identified. RESULTS Clinical and genetic data were available for 230 (163 males, 70.4 %) patients. Thirty-five pathogenic and likely pathogenic variants in various PD genes were identified in 47 patients resulting in a yield of 20.4 %. In the remaining, 82 patients had either variants of uncertain significance or had variants in genes not associated with parkinsonism and 101 patients did not have any non-benign variants. Patients with genetically mediated PD had a lower AAO and statistically greater frequency of dystonia (36.2 %), postural instability (29.8 %) and mood disorder (29.8 %) and a higher Hoehn and Yahr score (2.9). Among the 47 patients, 11 patients had PARK-PRKN, six patients had PARK-PLA2G6, and 22 patients had PARK-GBA1. CONCLUSION Around one-fifth of early-onset PD can have an underlying monogenetic cause. PARK-GBA1, PARK-PRKN and PARK-PLA2G6 are the commoner causes of genetically mediated PD in India. Patients with genetic cause had an earlier age at onset, and more frequent dystonia, postural instability and dyskinesia.
Collapse
Affiliation(s)
- Sneha D Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| |
Collapse
|
4
|
Cotrin JC, Piergiorge RM, Gonçalves AP, Pereira JS, Gerber AL, de Campos Guimarães AP, de Vasconcelos ATR, Santos-Rebouças CB. Co-occurrence of PRKN and SYNJ1 variants in Early-Onset Parkinson's disease. Metab Brain Dis 2024; 39:915-928. [PMID: 38836947 DOI: 10.1007/s11011-024-01362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease globally, with a fast-growing prevalence. The etiology of PD exhibits a multifactorial complex nature and remains challenging. Herein, we described clinical, molecular, and integrative bioinformatics findings from a Brazilian female affected by Early-Onset PD (EOPD) harboring a recurrent homozygous pathogenic deletion in the parkin RBR E3 ubiquitin protein ligase gene (PRKN; NM_004562.3:c.155delA; p.Asn52Metfs*29; rs754809877), along with a novel heterozygous variant in the synaptojanin 1 gene (SYNJ1; NM_003895.3:c.62G > T; p.Cys21Phe; rs1486511197) found by Whole Exome Sequencing. Uncommon or unreported PRKN-related clinical features in the patient include cognitive decline, auditory and visual hallucinations, REM sleep disorder, and depression, previously observed in SYNJ1-related conditions. Moreover, PRKN interacts with endophilin A1, which is a major binding partner of SYNJ1. This protein plays a pivotal role in regulating the dynamics of synaptic vesicles, particularly in the context of endocytosis and recycling processes. Altogether, our comprehensive analyses underscore a potential synergistic effect between the PRKN and SYNJ1 variants over the pathogenesis of EOPD.
Collapse
Affiliation(s)
- Juliana Cordovil Cotrin
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - João Santos Pereira
- Movement Disorders Section, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
5
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24307986. [PMID: 38853950 PMCID: PMC11160829 DOI: 10.1101/2024.05.29.24307986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have suggested that rare biallelic SYNJ1 mutations may cause autosomal recessive parkinsonism and Parkinson's disease (PD). Our study explored the impact of rare SYNJ1 variants in non-familial settings, including 8,165 PD cases, 818 early-onset PD (EOPD, <50 years) and 70,363 controls. Burden meta-analysis using optimized sequence Kernel association test (SKAT-O) revealed an association between rare nonsynonymous variants in the Sac1 SYNJ1 domain and PD (Pfdr=0.040). Additionally, a meta-analysis focusing on patients with EOPD demonstrated an association between all rare SYNJ1 variants and PD (Pfdr=0.029). Rare SYNJ1 variants may be associated with sporadic PD, and more specifically with EOPD.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Andrews SV, Kukkle PL, Menon R, Geetha TS, Goyal V, Kandadai RM, Kumar H, Borgohain R, Mukherjee A, Wadia PM, Yadav R, Desai S, Kumar N, Joshi D, Murugan S, Biswas A, Pal PK, Oliver M, Nair S, Kayalvizhi A, Samson PL, Deshmukh M, Bassi A, Sandeep C, Mandloi N, Davis OB, Roberts MA, Leto DE, Henry AG, Di Paolo G, Muthane U, Das SK, Peterson AS, Sandmann T, Gupta R, Ramprasad VL. The Genetic Drivers of Juvenile, Young, and Early-Onset Parkinson's Disease in India. Mov Disord 2024; 39:339-349. [PMID: 38014556 DOI: 10.1002/mds.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE The aim was to identify genetic risk factors for PD in a South Asian population. METHODS A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shan V Andrews
- Denali Therapeutics, South San Francisco, California, USA
| | - Prashanth L Kukkle
- Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | | | | | - Vinay Goyal
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Medanta Hospital, New Delhi, India
- Medanta, The Medicity, Gurgaon, India
| | - Rukmini Mridula Kandadai
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | | | - Rupam Borgohain
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | - Adreesh Mukherjee
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | - Ravi Yadav
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Soaham Desai
- Department of Neurology, Shree Krishna Hospital and Pramukhaswami Medical College, Bhaikaka University, Anand, India
| | - Niraj Kumar
- All India Institute of Medical Sciences, Rishikesh, India
- All India Institute of Medical Sciences, Bibinagar (Hyderabad Metropolitan Region), Bibinagar, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Atanu Biswas
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Pramod K Pal
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | | | | | | | | | | - Oliver B Davis
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Dara E Leto
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | - Uday Muthane
- Parkinson and Ageing Research Foundation, Bangalore, India
| | - Shymal K Das
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | | | | | | |
Collapse
|
7
|
Salemi M, Lanza G, Salluzzo MG, Schillaci FA, Di Blasi FD, Cordella A, Caniglia S, Lanuzza B, Morreale M, Marano P, Tripodi M, Ferri R. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson's Disease. Biomedicines 2023; 11:3118. [PMID: 38137339 PMCID: PMC10740523 DOI: 10.3390/biomedicines11123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a multisystem and multifactorial disorder and, therefore, the application of modern genetic techniques may assist in unraveling its complex pathophysiology. We conducted a clinical-demographic evaluation of 126 patients with PD, all of whom were Caucasian and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed by sequencing using a Next-Generation Sequencing system. This system was based on a custom gene panel comprising 162 genes. The sample underwent further filtering, taking into account the allele frequencies of genetic variants, their presence in the Human Gene Mutation Database, and their association in the literature with PD or other movement/neurodegenerative disorders. The largest number of variants was identified in the leucine-rich repeat kinase 2 (LRRK2) gene. However, variants in other genes, such as acid beta-glucosidase (GBA), DNA polymerase gamma catalytic subunit (POLG), and parkin RBR E3 ubiquitin protein ligase (PRKN), were also discovered. Interestingly, some of these variants had not been previously associated with PD. Enhancing our understanding of the genetic basis of PD and identifying new variants possibly linked to the disease will contribute to improved diagnostic accuracy, therapeutic developments, and prognostic insights for affected individuals.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, CT, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesco Domenico Di Blasi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Angela Cordella
- Genomix4Life Srl, 84081 Baronissi, SA, Italy;
- Genome Research Center for Health—CRGS, 84081 Baronissi, SA, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Manuela Morreale
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Pietro Marano
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Mariangela Tripodi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| |
Collapse
|
8
|
Koros C, Bougea A, Simitsi AM, Papagiannakis N, Angelopoulou E, Pachi I, Antonelou R, Bozi M, Stamelou M, Stefanis L. The Landscape of Monogenic Parkinson's Disease in Populations of Non-European Ancestry: A Narrative Review. Genes (Basel) 2023; 14:2097. [PMID: 38003040 PMCID: PMC10671808 DOI: 10.3390/genes14112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION There has been a bias in the existing literature on Parkinson's disease (PD) genetics as most studies involved patients of European ancestry, mostly in Europe and North America. Our target was to review published research data on the genetic profile of PD patients of non-European or mixed ancestry. METHODS We reviewed articles published during the 2000-2023 period, focusing on the genetic status of PD patients of non-European origin (Indian, East and Central Asian, Latin American, sub-Saharan African and Pacific islands). RESULTS There were substantial differences regarding monogenic PD forms between patients of European and non-European ancestry. The G2019S Leucine Rich Repeat Kinase 2 (LRRK2) mutation was rather scarce in non-European populations. In contrast, East Asian patients carried different mutations like p.I2020T, which is common in Japan. Parkin (PRKN) variants had a global distribution, being common in early-onset PD in Indians, in East Asians, and in early-onset Mexicans. Furthermore, they were occasionally present in Black African PD patients. PTEN-induced kinase 1 (PINK1) and PD protein 7 (DJ-1) variants were described in Indian, East Asian and Pacific Islands populations. Glucocerebrosidase gene variants (GBA1), which represent an important predisposing factor for PD, were found in East and Southeast Asian and Indian populations. Different GBA1 variants have been reported in Black African populations and Latin Americans. CONCLUSIONS Existing data reveal a pronounced heterogeneity in the genetic background of PD. A number of common variants in populations of European ancestry appeared to be absent or scarce in patients of diverse ethnic backgrounds. Large-scale studies that include genetic screening in African, Asian or Latin American populations are underway. The outcomes of such efforts will facilitate further clinical studies and will possibly contribute to the identification of either new pathogenic mutations in already described genes or novel PD-related genes.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Maria Bozi
- Dafni Psychiatric Hospital, 12462 Athens, Greece;
- 2nd Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| |
Collapse
|
9
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
10
|
Kukkle PL, Geetha TS, Chaudhary R, Sathirapongsasuti JF, Goyal V, Kandadai RM, Kumar H, Borgohain R, Mukherjee A, Oliver M, Sunil M, Mootor MFE, Kapil S, Mandloi N, Wadia PM, Yadav R, Desai S, Kumar N, Biswas A, Pal PK, Muthane UB, Das SK, Sakthivel Murugan SM, Peterson AS, Stawiski EW, Seshagiri S, Gupta R, Ramprasad VL, Prai PRAOI. Genome-Wide Polygenic Score Predicts Large Number of High Risk Individuals in Monogenic Undiagnosed Young Onset Parkinson's Disease Patients from India. Adv Biol (Weinh) 2022; 6:e2101326. [PMID: 35810474 DOI: 10.1002/adbi.202101326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a genetically heterogeneous neurodegenerative disease with poorly defined environmental influences. Genomic studies of PD patients have identified disease-relevant monogenic genes, rare variants of significance, and polygenic risk-associated variants. In this study, whole genome sequencing data from 90 young onset Parkinson's disease (YOPD) individuals are analyzed for both monogenic and polygenic risk. The genetic variant analysis identifies pathogenic/likely pathogenic variants in eight of the 90 individuals (8.8%). It includes large homozygous coding exon deletions in PRKN and SNV/InDels in VPS13C, PLA2G6, PINK1, SYNJ1, and GCH1. Eleven rare heterozygous GBA coding variants are also identified in 13 (14.4%) individuals. In 34 (56.6%) individuals, one or more variants of uncertain significance (VUS) in PD/PD-relevant genes are observed. Though YOPD patients with a prioritized pathogenic variant show a low polygenic risk score (PRS), patients with prioritized VUS or no significant rare variants show an increased PRS odds ratio for PD. This study suggests that both significant rare variants and polygenic risk from common variants together may contribute to the genesis of PD. Further validation using a larger cohort of patients will confirm the interplay between monogenic and polygenic variants and their use in routine genetic PD diagnosis and risk assessment.
Collapse
Affiliation(s)
- Prashanth Lingappa Kukkle
- Department of Neurology, Manipal Hospital, Miller Road, Bangalore, 560052, India.,Department of Neurology, Parkinson's Disease and Movement Disorders Clinic, Bangalore, 560010, India.,Department of Neurology, All India Institute of Medical Sciences, Rishikesh, 249201, India
| | - Thenral S Geetha
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | - Ruchi Chaudhary
- Research Department, MedGenome Inc., 348 Hatch Drive, Foster City, CA, 94404, USA
| | | | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110608, India.,Department of Neurology, Medanta Hospital, New Delhi, 110047, India.,Department of Neurology, Medanta, The Medicity, Gurgaon, 122006, India
| | | | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, 700007, India
| | - Rupam Borgohain
- Department of Neurology, Nizams Institute of Medical Sciences (NIMS), Hyderabad, 500082, India
| | - Adreesh Mukherjee
- Department of Neurology, Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, 700020, India
| | - Merina Oliver
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | - Meeta Sunil
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | | | - Shruti Kapil
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | - Nitin Mandloi
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | - Pettarusp M Wadia
- Department of Neurology, Jaslok Hospital and Research Centre, Mumbai, 400026, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Soaham Desai
- Department of Neurology, Shree Krishna Hospital and Pramukhswami Medical College, Bhaikaka University, Karamsad, 388325, India
| | - Niraj Kumar
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, 249201, India
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, 700020, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Uday B Muthane
- Department of Neurology, Parkinson and Ageing Research Foundation, Bangalore, 560095, India
| | - Shymal Kumar Das
- Department of Neurology, Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, 700020, India
| | | | - Andrew S Peterson
- Research Department, MedGenome Inc., 348 Hatch Drive, Foster City, CA, 94404, USA
| | - Eric W Stawiski
- Research Department, MedGenome Inc., 348 Hatch Drive, Foster City, CA, 94404, USA
| | | | - Ravi Gupta
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | - Vedam L Ramprasad
- Research and Diagnostics Department, MedGenome Labs Pvt Ltd, Bangalore, 560099, India
| | | |
Collapse
|
11
|
Maj M, Taylor CL, Landau K, Toriello HV, Li D, Bhoj EJ, Hakonarson H, Nelson B, Gluschitz S, Walker RH, Sobering AK. A novel SYNJ1 homozygous variant causing developmental and epileptic encephalopathy in an Afro-Caribbean individual. Mol Genet Genomic Med 2022; 11:e2064. [PMID: 36148638 PMCID: PMC9834178 DOI: 10.1002/mgg3.2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND SYNJ1 encodes Synaptojanin-1, a dual-function poly-phosphoinositide phosphatase that is expressed in the brain to regulate neuronal synaptic vesicle dynamics. Biallelic SYNJ1 variants cause a spectrum of clinical manifestations, from early onset parkinsonism to developmental and epileptic encephalopathy. METHODS Proband-only exome sequencing was used to identify a homozygous SYNJ1 pathogenic variant in an individual with epileptic encephalopathy. Sanger sequencing was used to confirm the variant. RESULTS We present an Afro-Caribbean female who developed uncontrollable seizures shortly after birth, accompanied by developmental delay and severe generalized dystonia. She had homozygosity for a novel c.242-2A > G variant in SYNJ1 with both parents being heterozygous carriers. An older sister was reported to have had a similar presentation but was not examined. Both siblings died at an approximate age of 16 years. CONCLUSIONS We report a novel pathogenic variant in SYNJ1 present in homozygosity leading to developmental and epileptic encephalopathy. Currently, there are only 4 reports describing 10 individuals with SYNJ1-related developmental and epileptic encephalopathy. This case expands the clinical knowledge and the allelic heterogeneity associated with SYNJ1 variants.
Collapse
Affiliation(s)
- Mary Maj
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada
| | - Christie L. Taylor
- Augusta University/University of Georgia Medical Partnership Campus of the Medical College of GeorgiaAthensGeorgiaUSA
| | - Kevin Landau
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada
| | - Helga V. Toriello
- Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA
| | - Dong Li
- Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Division of Human Genetics, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Elizabeth J. Bhoj
- Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Division of Human Genetics, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA,Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Beverly Nelson
- Pediatrics WardGrenada General HospitalSt. George'sGrenada,Clinical Teaching UnitSt. George's University School of MedicineSt. George'sGrenada
| | - Sarah Gluschitz
- Department of Anatomical SciencesSt. George's University School of MedicineSt. George'sGrenada
| | - Ruth H. Walker
- Department of NeurologyJames J. Peters Veterans Affairs Medical CenterBronxNew YorkUSA,Department of NeurologyMount Sinai School of MedicineNew York CityNew YorkUSA
| | - Andrew K. Sobering
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada,Department of Basic Sciences, University of Georgia Health Sciences CampusAugusta University/University of Georgia Medical PartnershipAthensGeorgiaUSA,Windward Islands Research and Education FoundationSt. George'sGrenada
| |
Collapse
|
12
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
13
|
Simpson C, Vinikoor-Imler L, Nassan FL, Shirvan J, Lally C, Dam T, Maserejian N. Prevalence of ten LRRK2 variants in Parkinson's disease: A comprehensive review. Parkinsonism Relat Disord 2022; 98:103-113. [PMID: 35654702 DOI: 10.1016/j.parkreldis.2022.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Variants in the leucine-rich repeat kinase 2 gene (LRRK2) are risk factors for Parkinson's disease (PD), but their prevalence varies geographically, reflecting the locations of founder events and dispersion of founders' descendants. METHODS A comprehensive literature review was conducted to identify studies providing prevalence estimates for any of ten variants in LRRK2 (G2019S, R1441C, R1441G, R1441H, I2020T, N1437H, Y1699C, S1761R, G2385R, R1628P) among individuals with PD globally. We calculated crude country-specific variant prevalence estimates and, when possible, adjusted estimates for ethno-racial composition. For clinic-based studies, probands were used over other familial cases, whereas for population-based studies, all PD cases were used. RESULTS The analysis included 161 articles from 52 countries yielding 581 prevalence estimates across the ten variants. G2019S was the most common variant, exceeding 1.0% in 26 of 51 countries with estimates. The other variants were far less common. G2385R and R1628P were observed almost exclusively in East Asian countries, where they were found in ∼5-10% of cases. All prevalence estimates adjusted for ethno-racial composition were lower than their unadjusted counterparts, although data permitting this adjustment was only available for six countries. CONCLUSIONS Except for G2019S, the LRRK2 variants covered in this review were uncommon in most countries studied. However, there were countries with higher prevalence for some variants, reflecting the uneven geographic distribution of LRRK2 variants. The fact that ethno-racial group‒adjusted estimates were lower than crude estimates suggests that estimates derived largely from clinic-based studies may overstate the true prevalence of some LRRK2 variants in PD.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Lally
- Epidemiology Research and Methods LLC, Atlanta, GA, USA.
| | | | | |
Collapse
|
14
|
Clarelli F, Barizzone N, Mangano E, Zuccalà M, Basagni C, Anand S, Sorosina M, Mascia E, Santoro S, Guerini FR, Virgilio E, Gallo A, Pizzino A, Comi C, Martinelli V, Comi G, De Bellis G, Leone M, Filippi M, Esposito F, Bordoni R, Martinelli Boneschi F, D'Alfonso S. Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Front Genet 2022; 12:800262. [PMID: 35047017 PMCID: PMC8762330 DOI: 10.3389/fgene.2021.800262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10-4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases.
Collapse
Affiliation(s)
- Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Miriam Zuccalà
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Chiara Basagni
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Santosh Anand
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Eleonora Virgilio
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Antonio Gallo
- MS Center, I Division of Neurology, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Vittorio Martinelli
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Filippo Martinelli Boneschi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, MS Centre, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| |
Collapse
|
15
|
O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1841-1861. [PMID: 35848035 PMCID: PMC9535602 DOI: 10.3233/jpd-223262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 06/06/2023]
Abstract
Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
Collapse
Affiliation(s)
- Chelsea O’Day
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - David Isaac Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - Rachel Mai McQuade
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
16
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z. Global Trends in the Incidence, Prevalence, and Years Lived With Disability of Parkinson's Disease in 204 Countries/Territories From 1990 to 2019. Front Public Health 2021; 9:776847. [PMID: 34950630 PMCID: PMC8688697 DOI: 10.3389/fpubh.2021.776847] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Parkinson's disease (PD) is an increasing challenge to public health. Tracking the temporal trends of PD burden would inform health strategies. Methods: Data of PD burden was obtained from the Global Burden of Disease 2019. Trends in the incidence, prevalence, and years lived with disability (YLDs) of PD were estimated using the annual percentage change (EAPC) and age-standardized rate (ASR) from 1990 to 2019. The EAPCs were calculated with ASR through a linear regression model. Results: The overall ASR of the incidence, prevalence, and YLDs of PD increased from 1990 to 2019, and their EAPCs were 0.61 (95% confidence interval [CI]: 0.58–0.65), 0.52 (95% CI: 0.43–0.61), and 0.53 (95% CI: 0.44–0.62). The largest number of PD patients was seen in the groups aged more than 65 years, and the percentage rapidly increased in the population aged more than 80 years. Upward trends in the ASR of PD were observed in most settings over the past 30 years. Incident trends of ASR increased pronouncedly in the United States of America and Norway, in which the respective EAPCs were 2.87 (95% CI: 2.35–3.38) and 2.14 (95% CI: 2.00–2.29). Additionally, the largest increasing trends for prevalence and YLDs were seen in Norway, with the respective EAPCs of 2.63 (95% CI: 2.43–2.83) and 2.61 (95% CI: 2.41–2.80). However, decreasing trends in PD appeared in about 30 countries, particularly Italy and the Republic of Moldova. Conclusions: Increasing trends in the burden of PD were observed globally, and in most regions and countries from 1990 to 2019. Our findings suggested that the control and management of PD should be strengthened, especially when considering the aging tendency of the population.
Collapse
Affiliation(s)
- Zejin Ou
- Department of Central Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China.,Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Jing Pan
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China.,Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Shihao Tang
- Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Danping Duan
- Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Danfeng Yu
- Department of Medical Intensive Care Unit (MICU), Guangdong Women and Children Hospital, Guangzhou, China
| | - Huiqi Nong
- Department of Central Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China.,Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| |
Collapse
|
18
|
Lim JL, Lohmann K, Tan AH, Tay YW, Ibrahim KA, Abdul Aziz Z, Mawardi AS, Puvanarajah SD, Lim TT, Looi I, Ooi JCE, Chia YK, Muthusamy KA, Bauer P, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. J Neural Transm (Vienna) 2021; 129:37-48. [PMID: 34779914 DOI: 10.1007/s00702-021-02421-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
GBA variants are associated with increased risk and earlier onset of Parkinson's disease (PD), and more rapid disease progression especially with "severe" variants typified by p.L483P. GBA mutation screening studies from South-East Asia, with > 650 million inhabitants of diverse ancestries, are very limited. We investigated the spectrum of GBA variants, and associated clinico-demographic features, in a multi-ethnic PD cohort in Malaysia. Patients (n = 496) were recruited from seven centres, primarily of Chinese (45%), Malay (37%), and Indian (13%) ethnicities. All GBA coding exons were screened using a next-generation sequencing-based PD gene panel and verified with Sanger sequencing. We identified 14 heterozygous GBA alleles consisting of altogether 17 missense variants (8 classified as pathogenic or likely pathogenic for PD) in 25 (5.0%) patients, with a substantially higher yield among early (< 50 years) vs. late-onset patients across all three ethnicities (9.1-13.2% vs. 1.0-3.2%). The most common variant was p.L483P (including RecNciI, n = 11, 2.2%), detected in all three ethnicities. Three novel variants/recombinant alleles of uncertain significance were found; p.P71L, p.L411P, and p.L15S(;)S16G(;)I20V. The common European risk variants, p.E365K, p.T408M, and p.N409S, were not detected. A severe disease course was noted in the majority of GBA-variant carriers, across a range of detected variants. We report a potentially novel observation of spine posture abnormalities in GBA-variant carriers. This represents the largest study on GBA variation from South-East Asia, and highlights that these populations, especially those with EOPD, would be relevant for studies including clinical trials targeting GBA pathways.
Collapse
Affiliation(s)
- Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia.,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Thien Thien Lim
- Island Hospital, Penang, Malaysia.,Penang General Hospital, Penang, Malaysia
| | - Irene Looi
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia. .,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Homozygous PLA2G6 (PARK 14) gene mutation associated neuropsychiatric phenotypes from southern India. Parkinsonism Relat Disord 2021; 90:49-51. [PMID: 34365112 DOI: 10.1016/j.parkreldis.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/23/2022]
Abstract
PLA2G6 gene associated neurodegenerative disorders resulting from homozygous c. 2222G > A (p.Arg741Gln) mutation were detected in two cases having variable neuropsychiatric phenotypic and imaging findings. Exome analysis helped identification of rare alleles, reinforcing ethnographic antecedents to geographical clustering of rare mutations and, essential to understanding biology of neurodegenerative disorders.
Collapse
|
20
|
Pandey S, Tomar LR. The Ala53Thr Mutation in the α-Synuclein Gene in an Indian Patient with Young-Onset Parkinson's Disease. Mov Disord Clin Pract 2021; 8:624-626. [PMID: 33981801 DOI: 10.1002/mdc3.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sanjay Pandey
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| | | |
Collapse
|
21
|
Lesage S, Mangone G, Tesson C, Bertrand H, Benmahdjoub M, Kesraoui S, Arezki M, Singleton A, Corvol JC, Brice A. Clinical Variability of SYNJ1-Associated Early-Onset Parkinsonism. Front Neurol 2021; 12:648457. [PMID: 33841314 PMCID: PMC8027075 DOI: 10.3389/fneur.2021.648457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Autosomal recessive early-onset parkinsonism is clinically and genetically heterogeneous. Mutations of three genes, PRKN, PINK1, and DJ-1 cause pure phenotypes usually characterized by levodopa-responsive Parkinson's disease. By contrast, mutations of other genes, including ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, VPS13C, and PTRHD1, cause rarer, more severe diseases with a poor response to levodopa, generally with additional atypical features. We performed data mining on a gene panel or whole-exome sequencing in 460 index cases with early-onset (≤ 40 years) Parkinson's disease, including 57 with autosomal recessive disease and 403 isolated cases. We identified two isolated cases carrying biallelic mutations of SYNJ1 (double-heterozygous p.D791fs/p.Y232H and homozygous p. Y832C mutations) and two siblings with the recurrent homozygous p.R258Q mutation. All four variants were absent or rare in the Genome Aggregation Database, were predicted to be deleterious on in silico analysis and were found to be highly conserved between species. The patient with both the previously unknown p.D791fs and p.Y232H mutations presented with dystonia-parkinsonism accompanied by a frontal syndrome and oculomotor disturbances at the age of 39. In addition, two siblings from an Algerian consanguineous family carried the homozygous p.R258Q mutation and presented generalized tonic-clonic seizures during childhood, with severe intellectual disability, followed by progressive parkinsonism during their teens. By contrast, the isolated patient with the homozygous p. Y832C mutation, diagnosed at the age of 20, had typical parkinsonism, with no atypical symptoms and slow disease progression. Our findings expand the mutational spectrum and phenotypic profile of SYNJ1-related parkinsonism.
Collapse
Affiliation(s)
- Suzanne Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Hélène Bertrand
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | | | | | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| |
Collapse
|
22
|
Hunting for Familial Parkinson's Disease Mutations in the Post Genome Era. Genes (Basel) 2021; 12:genes12030430. [PMID: 33802862 PMCID: PMC8002626 DOI: 10.3390/genes12030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
Parkinson’s disease (PD) is typically sporadic; however, multi-incident families provide a powerful platform to discover novel genetic forms of disease. Their identification supports deciphering molecular processes leading to disease and may inform of new therapeutic targets. The LRRK2 p.G2019S mutation causes PD in 42.5–68% of carriers by the age of 80 years. We hypothesise similarly intermediately penetrant mutations may present in multi-incident families with a generally strong family history of disease. We have analysed six multiplex families for missense variants using whole exome sequencing to find 32 rare heterozygous mutations shared amongst affected members. Included in these mutations was the KCNJ15 p.R28C variant, identified in five affected members of the same family, two elderly unaffected members of the same family, and two unrelated PD cases. Additionally, the SIPA1L1 p.R236Q variant was identified in three related affected members and an unrelated familial case. While the evidence presented here is not sufficient to assign causality to these rare variants, it does provide novel candidates for hypothesis testing in other modestly sized families with a strong family history. Future analysis will include characterisation of functional consequences and assessment of carriers in other familial cases.
Collapse
|
23
|
Biswas A, Sadhukhan D, Biswas A, Das SK, Banerjee TK, Bal PS, Pal S, Ghosh A, Ray K, Ray J. Identification of GBA mutations among neurodegenerative disease patients from eastern India. Neurosci Lett 2021; 751:135816. [PMID: 33711404 DOI: 10.1016/j.neulet.2021.135816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION GBA mutations have been reported in PD, PDD and DLB - but not associated with cognitive impairment for example in PSP, AD or MSA. However, frequencies of GBA mutations are ethnicity dependent. The present study aims to identify commonly reported GBA mutations (mostly from Asia), among eastern Indian patients with neurodegenerative disorders. METHODS The patient cohort consisting of 198 classical PD cases, 136 PD cases with cognitive impairment, 184 cases with Parkinson Plus syndrome, 46 AD and 241 unrelated controls, from eastern India. Subjects were analyzed for IVS2 + 1A > G, p.Arg120Trp, p.His255Gln, p.Arg257Gln, p.Glu326Lys, p.Asn370Ser, p.Asp409His, p.Leu444Pro, & RecNciI by PCR-RFLP techniques and confirmed by Sanger sequencing method. RESULTS We have identified only p.Leu444Pro variant among nine cases; three PDD, one DLB, two PD, two PSP and one AD patients in heterozygous condition. The highest frequency for p.Leu444Pro variant was found among PDD subgroup (3.95 %, P = 0.0134). An overall significant overrepresentation of positive family history (P = 0.000049), impaired recent memory (P = 0.0123) was observed among p.Leu444Pro carriers. Further, subgroup analysis for PD, PD-MCI and PDD, revealed statistically significant higher frequency of early age at onset (P = 0.0455), positive family history (P = 0.0025), higher UPDRS III score (off state) (P = 0.006), advanced H&Y stage (P = 0.045) and anxious behaviour (P = 0.0124) among p.Leu444Pro positive patients. CONCLUSION The p.Leu444Pro mutation of GBA was found in patients with PD, PDD, DLB, PSP and AD. An Overall higher frequency of positive family history and impaired recent memory are significantly associated with for p.Leu444Pro carriers from eastern India. Our study also ascertains contribution of p.Leu444Pro to an earlier onset of PD, PD-MCI and PDD, higher UPDRS III score (off state) against positive family history background. Furthermore, taking into consideration other Indian studies, we can conclude that p.Leu444Pro mutation plays a limited role in PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Arindam Biswas
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India; S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Dipanwita Sadhukhan
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Atanu Biswas
- Institute of Post graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Shyamal K Das
- Institute of Post graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Tapas K Banerjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India
| | - Partha Sarathi Bal
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India
| | - Sandip Pal
- Medical College & Hospitals, Kolkata, India
| | | | - Kunal Ray
- ATGC Diagnostics Private Limited, Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|
24
|
Kumar S, Abbas MM, Govindappa ST, Muthane UB, Behari M, Pandey S, Juyal RC, Thelma BK. Compound heterozygous variants in Wiskott-Aldrich syndrome like (WASL) gene segregating in a family with early onset Parkinson's disease. Parkinsonism Relat Disord 2021; 84:61-67. [PMID: 33571872 DOI: 10.1016/j.parkreldis.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Knowledge of genetic determinants in Parkinson's disease is still limited. Familial forms of the disease continue to provide a rich resource to capture the genetic spectrum in disease pathogenesis, and this approach is exploited in this study. METHODS Informative members from a three-generation family of Indian ethnicity manifesting a likely autosomal recessive mode of inheritance of Parkinson's disease were used for whole exome sequencing. Variant data analysis and in vitro functional characterisation of variant(s) segregating with the phenotype were carried out in HEK-293 and SH-SY5Y cells using gene constructs of interest. RESULTS Two compound heterozygous variants, a rare missense (c.1139C > T:p.P380L) and a novel splice variant (c.1456 + 2 delTAGA, intron10) in Wiskott-Aldrich syndrome like gene (WASL, 7q31), both predicted to be deleterious were shared among the proband and two affected siblings. WASL, a gene not previously linked to a human Mendelian disorder is known to regulate actin polymerisation via Arp2/3 complex. Based on exon trapping assay using pSPL3 vector in HEK-293 cells, the splice variant showed skipping of exon10. Characterisation of the missense variant in SH-SY5Y cells demonstrated: i) significant alterations in neurite length and number; ii) decreased reactive oxygen species tolerance in mutation carrying cells on Tetrabutylphosphonium hydroxide induction and iii) increase in alpha-synuclein protein. Screening for WASL variants in two independent PD cohorts identified four individuals with heterozygous but none with biallelic variants. CONCLUSION WASL, with demonstrated functional relevance in neurons may be yet another strong candidate gene for autosomal recessive PD encouraging assessment of its contribution across populations.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Masoom M Abbas
- Parkinson's and Aging Research Foundation, Bangalore, India
| | | | - Uday B Muthane
- Parkinson's and Aging Research Foundation, Bangalore, India
| | - Madhuri Behari
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, India
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
25
|
Chen J, Liu X, Xu Y, Fan D. [Rare variants of HSPB1 are probably associated with amyotrophic lateral sclerosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:75-78. [PMID: 33509756 DOI: 10.12122/j.issn.1673-4254.2021.01.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the association between rare HSPB1 variants and amyotrophic lateral sclerosis (ALS). METHODS We performed next-generation sequencing for 166 Chinese ALS patients to screen for possible pathogenic rare variants of HSPB1. The control individuals were obtained from 1000 Genome Project and an in-house whole-exome sequencing database. The Sequence Kernel Association Test (SKAT) and the SKAT-optimal test (SKAT-O) were used to identify the association between rare HSPB1 variants and ALS. RESULTS We identified 3 possible pathogenic rare variants of HSPB1 (all were missenses), including c.379C>T (p.R127W), c.446A>C (p.D149A) and c.451A>C (p.T151P). Compared with 1000 Genome Project, SKAT p=3.61×10-7 and SKAT-O p=1.62×10-6; while compared with the in-house database, SKAT p=9.99×10-4, SKAT-O p= 1.80×10-3. We analyzed the phenotypes of rare HSPB1 variant carriers and found no specific clinical characteristics associated with these variants. CONCLUSIONS Rare variants of HSPB1 are probably associated with the pathogenesis of ALS.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|