1
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Leitner C, D'Este G, Verga L, Rahayel S, Mombelli S, Sforza M, Casoni F, Zucconi M, Ferini-Strambi L, Galbiati A. Neuropsychological Changes in Isolated REM Sleep Behavior Disorder: A Systematic Review and Meta-analysis of Cross-sectional and Longitudinal Studies. Neuropsychol Rev 2024; 34:41-66. [PMID: 36588140 DOI: 10.1007/s11065-022-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
The aim of this meta-analysis is twofold: (a) to assess cognitive impairments in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) patients compared to healthy controls (HC); (b) to quantitatively estimate the risk of developing a neurodegenerative disease in iRBD patients according to baseline cognitive assessment. To address the first aim, cross-sectional studies including polysomnography-confirmed iRBD patients, HC, and reporting neuropsychological testing were included. To address the second aim, longitudinal studies including polysomnography-confirmed iRBD patients, reporting baseline neuropsychological testing for converted and still isolated patients separately were included. The literature search was conducted based on PRISMA guidelines and the protocol was registered at PROSPERO (CRD42021253427). Cross-sectional and longitudinal studies were searched from PubMed, Web of Science, Scopus, and Embase databases. Publication bias and statistical heterogeneity were assessed respectively by funnel plot asymmetry and using I2. Finally, a random-effect model was performed to pool the included studies. 75 cross-sectional (2,398 HC and 2,460 iRBD patients) and 11 longitudinal (495 iRBD patients) studies were selected. Cross-sectional studies showed that iRBD patients performed significantly worse in cognitive screening scores (random-effects (RE) model = -0.69), memory (RE model = -0.64), and executive function (RE model = -0.50) domains compared to HC. The survival analyses conducted for longitudinal studies revealed that lower executive function and language performance, as well as the presence of mild cognitive impairment (MCI), at baseline were associated with an increased risk of conversion at follow-up. Our study underlines the importance of a comprehensive neuropsychological assessment in the context of iRBD.
Collapse
Affiliation(s)
- Caterina Leitner
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Giada D'Este
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Laura Verga
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Faculty of Psychology and Neuroscience, Department NP&PP, Maastricht University, Maastricht, The Netherlands
| | - Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Samantha Mombelli
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Sforza
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Zucconi
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Luigi Ferini-Strambi
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Andrea Galbiati
- "Vita-Salute" San Raffaele University, Milan, Italy.
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy.
| |
Collapse
|
3
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
4
|
Theis H, Pavese N, Rektorová I, van Eimeren T. Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S353-S365. [PMID: 38339941 PMCID: PMC11492013 DOI: 10.3233/jpd-230385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.
Collapse
Affiliation(s)
- Hendrik Theis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Nicola Pavese
- Aarhus University, Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus N, Denmark
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Irena Rektorová
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, International Clinical Research Center, ICRC, Brno, Czech Republic
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, First Department of Neurology, Brno, Czech Republic
- Masaryk University, Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Brno, Czech Republic
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
5
|
Stær K, Iranzo A, Terkelsen MH, Stokholm MG, Danielsen EH, Østergaard K, Serradell M, Otto M, Svendsen KB, Garrido A, Vilas D, Santamaria J, Møller A, Gaig C, Brooks DJ, Borghammer P, Tolosa E, Pavese N. Progression of brain cholinergic dysfunction in patients with isolated rapid eye movement sleep behavior disorder. Eur J Neurol 2024; 31:e16101. [PMID: 37847229 PMCID: PMC11236023 DOI: 10.1111/ene.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Reduced cortical acetylcholinesterase activity, as measured by 11 C-donepezil positron emission tomography (PET), has been reported in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD). However, its progression and clinical implications have not been fully investigated. Here, we explored the relationship between longitudinal changes in brain acetylcholinesterase activity and cognitive function in iRBD. METHODS Twelve iRBD patients underwent 11 C-donepezil PET at baseline and after 3 years. PET images were interrogated with statistical parametric mapping (SPM) and a regions of interest (ROI) approach. Clinical progression was assessed with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III). Cognitive function was rated using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). RESULTS From baseline to follow-up, the mean 11 C-donepezil distribution volume ratio (DVR) decreased in the cortex (p = 0.006), thalamus (p = 0.013), and caudate (p = 0.013) ROI. Despite no significant changes in the group mean MMSE or MoCA scores being observed, individually, seven patients showed a decline in their scores on these cognitive tests. Subgroup analysis showed that only the subgroup of patients with a decline in cognitive scores had a significant reduction in mean cortical 11 C-donepezil DVR. CONCLUSIONS Our results show that severity of brain cholinergic dysfunction in iRBD patients increases significantly over 3 years, and those changes are more severe in those with a decline in cognitive test scores.
Collapse
Affiliation(s)
- Kristian Stær
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Alex Iranzo
- Department of NeurologyHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Sleep Disorders CenterHospital ClinicBarcelonaSpain
| | - Miriam Højholt Terkelsen
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
- Department of NeurologyAarhus University HospitalAarhus NDenmark
| | - Morten Gersel Stokholm
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
| | | | - Karen Østergaard
- Department of NeurologyAarhus University HospitalAarhus NDenmark
| | - Mónica Serradell
- Department of NeurologyHospital Clínic de BarcelonaBarcelonaSpain
- Sleep Disorders CenterHospital ClinicBarcelonaSpain
| | - Marit Otto
- Department of NeurologyAarhus University HospitalAarhus NDenmark
- Department of Clinical NeurophysiologyAarhus University HospitalAarhus NDenmark
| | | | - Alicia Garrido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaCataloniaSpain
| | - Dolores Vilas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaCataloniaSpain
| | - Joan Santamaria
- Department of NeurologyHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Sleep Disorders CenterHospital ClinicBarcelonaSpain
| | - Arne Møller
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Carles Gaig
- Department of NeurologyHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Sleep Disorders CenterHospital ClinicBarcelonaSpain
| | - David J. Brooks
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Per Borghammer
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Eduardo Tolosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPSUniversitat de BarcelonaCataloniaSpain
- Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaCataloniaSpain
| | - Nicola Pavese
- Department of Nuclear Medicine & PET, Institute of Clinical MedicineAarhus UniversityAarhus NDenmark
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
6
|
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's Disease: A Narrative Review on Potential Molecular Mechanisms of Sleep Disturbances, REM Behavior Disorder, and Melatonin. Brain Sci 2023; 13:914. [PMID: 37371392 DOI: 10.3390/brainsci13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. There is a wide range of sleep disturbances in patients with PD, such as insomnia and rapid eye movement (REM) sleep behavior disorder (or REM behavior disorder (RBD)). RBD is a sleep disorder in which a patient acts out his/her dreams and includes abnormal behaviors during the REM phase of sleep. On the other hand, melatonin is the principal hormone that is secreted by the pineal gland and significantly modulates the circadian clock and mood state. Furthermore, melatonin has a wide range of regulatory effects and is a safe treatment for sleep disturbances such as RBD in PD. However, the molecular mechanisms of melatonin involved in the treatment or control of RBD are unknown. In this study, we reviewed the pathophysiology of PD and sleep disturbances, including RBD. We also discussed the potential molecular mechanisms of melatonin involved in its therapeutic effect. It was concluded that disruption of crucial neurotransmitter systems that mediate sleep, including norepinephrine, serotonin, dopamine, and GABA, and important neurotransmitter systems that mediate the REM phase, including acetylcholine, serotonin, and norepinephrine, are significantly involved in the induction of sleep disturbances, including RBD in PD. It was also concluded that accumulation of α-synuclein in sleep-related brain regions can disrupt sleep processes and the circadian rhythm. We suggested that new treatment strategies for sleep disturbances in PD may focus on the modulation of α-synuclein aggregation or expression.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Mohadeseh Toomarisahzabi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Fereshteh Rezaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran 13337159140, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| |
Collapse
|
7
|
Byun JI, Cha KS, Kim M, Lee WJ, Lee HS, Sunwoo JS, Shin JW, Kim TJ, Jun JS, Kim HJ, Shin WC, Schenck CH, Lee SK, Jung KY. Association of Nucleus Basalis of Meynert Functional Connectivity and Cognition in Idiopathic Rapid-Eye-Movement Sleep Behavior Disorder. J Clin Neurol 2022; 18:562-570. [PMID: 36062774 PMCID: PMC9444555 DOI: 10.3988/jcn.2022.18.5.562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cognitive impairments are common in isolated rapid-eye-movement sleep behavior disorder (iRBD), in which the cholinergic system may play an important role. This study aimed to characterize the cortical cholinergic activity using resting-state functional connectivity (FC) of the nucleus basalis of Meynert (NBM) according to the cognitive status of iRBD patients. METHODS In this cross-sectional study, 33 patients with polysomnography-confirmed iRBD and 20 controls underwent neuropsychological evaluations and resting-state functional magnetic resonance imaging. Thirteen of the iRBD patients had mild cognitive impairment (iRBD-MCI), and the others were age-matched patients with normal cognition (iRBD-NC). The seed-to-voxel NBM-cortical FC was compared among the patients with iRBD-MCI, patients with iRBD-NC, and controls. Correlations between average values of significant clusters and cognitive function scores were calculated in the patients with iRBD. RESULTS There were group differences in the FC of the NBM with the left lateral occipital cortex and lingual gyrus (adjusted for age, sex, and education level). The strength of FC was lower in the iRBD-MCI group than in the iRBD-NC and control groups (each post-hoc p<0.001). The average NBM-lateral occipital cortex FC was positively correlated with the memory-domain score in iRBD patients. CONCLUSIONS The results obtained in this study support that cortical cholinergic activity is impaired in iRBD patients with MCI. FC between NBM and posterior regions may play a central role in the cognitive function of these patients.
Collapse
Affiliation(s)
- Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Han Sang Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Kangbuk Samsung Hospital, Seoul, Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Won Chul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Department of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Hvingelby VS, Glud AN, Sørensen JCH, Tai Y, Andersen ASM, Johnsen E, Moro E, Pavese N. Interventions to improve gait in Parkinson's disease: a systematic review of randomized controlled trials and network meta-analysis. J Neurol 2022; 269:4068-4079. [PMID: 35378605 DOI: 10.1007/s00415-022-11091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Disabling gait symptoms, especially freezing of gait (FoG), represents a milestone in the progression of Parkinson's disease (PD). This systematic review and network meta-analysis assessed and ranked interventions according to their effectiveness in treating gait symptoms in people with PD across four different groups of gait measures. METHODS A systematic search was carried out across PubMed, EMBASE, PubMed Central (PMC), and Cochrane Central Library from January 2000 to April 2021. All interventions, or combinations, were included. The primary outcome was changes in objective gait measures, before and after intervention. Outcome measures in the included studies were stratified into four different types of gait outcome measures; dynamic gait, fitness, balance, and freezing of gait. For the statistical analysis, five direct head-to-head comparisons of interventions, as well as indirect comparisons were performed. Corresponding forest plots ranking the interventions were generated. RESULTS The search returned 6288 articles. From these, 148 articles could be included. Of the four different groups of measurement, three were consistent, meaning that there was agreement between direct and indirect evidence. The groups with consistent evidence were dynamic gait, fitness, and freezing of gait. For dynamic gait measures, treatments with the largest observed effect were Aquatic Therapy with dual task exercising (SMD 1.99 [- 1.00; 4.98]) and strength and balance training (SMD 1.95 [- 0.20; 4.11]). For measures of fitness, treatments with the largest observed effects were aquatic therapy (SMD 3.41 [2.11; 4.71] and high-frequency repetitive transcranial magnetic stimulation (SMD 2.51 [1.48; 3.55]). For FoG measures, none of the included interventions yielded significant results. CONCLUSION Some interventions can ameliorate gait impairment in people with PD. No recommendations on a superior intervention can be made. None of the studied interventions proved to be efficacious in the treatment of FoG. PROSPERO (registration ID CRD42021264076).
Collapse
Affiliation(s)
- Victor Schwartz Hvingelby
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark. .,Department of Nuclear Medicine, PET Centre Aarhus University Hospital, Aarhus, Denmark.
| | - Andreas Nørgaard Glud
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Christian Hedemann Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Yen Tai
- Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | | | - Erik Johnsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire of Grenoble, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neuroscience, Grenoble, France
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Department of Nuclear Medicine, PET Centre Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res 2022; 100:1815-1833. [DOI: 10.1002/jnr.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Alexander Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Edmond J. Safra Parkinson Disease Program & Morton and Gloria Shulman Movement Disorder Unit, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Terkelsen MH, Klaestrup IH, Hvingelby V, Lauritsen J, Pavese N, Romero-Ramos M. Neuroinflammation and Immune Changes in Prodromal Parkinson's Disease and Other Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S149-S163. [PMID: 35723115 PMCID: PMC9535563 DOI: 10.3233/jpd-223245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Multiple lines of clinical and pre-clinical research support a pathogenic role for neuroinflammation and peripheral immune system dysfunction in Parkinson's disease. In this paper, we have reviewed and summarised the published literature reporting evidence of neuroinflammation and peripheral immune changes in cohorts of patients with isolated REM sleep behaviour disorder and non-manifesting carriers of GBA or LRRK2 gene mutations, who have increased risk for Parkinsonism and synucleinopathies, and could be in the prodromal stage of these conditions. Taken together, the findings of these studies suggest that the early stages of pathology in Parkinsonism involve activation of both the central and peripheral immune systems with significant crosstalk. We consider these findings with respect to those found in patients with clinical Parkinson's disease and discuss their possible pathological roles. Moreover, those factors possibly associated with the immune response, such as the immunomodulatory role of the affected neurotransmitters and the changes in the gut-brain axis, are also considered.
Collapse
Affiliation(s)
| | - Ida H. Klaestrup
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Victor Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
12
|
Pasquini J, Brooks DJ, Pavese N. The Cholinergic Brain in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1012-1026. [PMID: 34631936 DOI: 10.1002/mdc3.13319] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The central cholinergic system includes the basal forebrain nuclei, mainly projecting to the cortex, the mesopontine tegmental nuclei, mainly projecting to the thalamus and subcortical structures, and other groups of projecting neurons and interneurons. This system regulates many functions of human behavior such as cognition, locomotion, and sleep. In Parkinson's disease (PD), disruption of central cholinergic transmission has been associated with cognitive decline, gait problems, freezing of gait (FOG), falls, REM sleep behavior disorder (RBD), neuropsychiatric manifestations, and olfactory dysfunction. Neuropathological and neuroimaging evidence suggests that basal forebrain pathology occurs simultaneously with nigrostriatal denervation, whereas pathology in the pontine nuclei may occur before the onset of motor symptoms. These studies have also detailed the clinical implications of cholinergic dysfunction in PD. Degeneration of basal forebrain nuclei and consequential cortical cholinergic denervation are associated with and may predict the subsequent development of cognitive decline and neuropsychiatric symptoms. Gait problems, FOG, and falls are associated with a complex dysfunction of both pontine and basal forebrain nuclei. Olfactory impairment is associated with cholinergic denervation of the limbic archicortex, specifically hippocampus and amygdala. Available evidence suggests that cholinergic dysfunction, alongside failure of the dopaminergic and other neurotransmitters systems, contributes to the generation of a specific set of clinical manifestations. Therefore, a "cholinergic phenotype" can be identified in people presenting with cognitive decline, falls, and RBD. In this review, we will summarize the organization of the central cholinergic system and the clinical correlates of cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation University of Milan Milan Italy.,Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom
| | - David J Brooks
- Positron Emission Tomography Centre Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
13
|
Sheng W, Guo T, Zhou C, Wu J, Gao T, Pu J, Zhang B, Zhang M, Yang Y, Guan X, Xu X. Altered Cortical Cholinergic Network in Parkinson's Disease at Different Stage: A Resting-State fMRI Study. Front Aging Neurosci 2021; 13:723948. [PMID: 34566625 PMCID: PMC8461333 DOI: 10.3389/fnagi.2021.723948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts for various clinical symptoms in PD patients. The substantia innominata (SI) provides the main source of cortical cholinergic innervation. Previous studies revealed cholinergic-related dysfunction in PD pathology at early stage. Since PD is a progressive disorder, alterations of cholinergic system function along with the PD progression have yet to be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients (PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy controls (HC) underwent brain magnetic resonance imaging and clinical assessments. We employed seed-based resting-state functional connectivity analysis to explore the cholinergic-related functional alterations. Correlation analysis was used to investigate the relationship between altered functional connectivity and the severity of motor symptoms in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased functional connectivity between left SI and left frontal inferior opercularis areas and increased functional connectivity between left SI and left cingulum middle area as well as right primary motor and sensory areas when comparing with HC. At advanced stages of PD, functional connectivity in the right primary motor and sensory areas was further increased. These altered functional connectivity were also significantly correlated with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this study illustrated that altered cholinergic function plays an important role in the motor disruptions in PD patients both in early stage as well as during the progression of the disease.
Collapse
Affiliation(s)
- Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Neurochemical Features of Rem Sleep Behaviour Disorder. J Pers Med 2021; 11:jpm11090880. [PMID: 34575657 PMCID: PMC8468296 DOI: 10.3390/jpm11090880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic deficiency, shown by many studies using functional neuroimaging with Single Photon Emission Computerized Tomography (SPECT) and Positron Emission Tomography (PET), is the most consistent neurochemical feature of rapid eye movement (REM) sleep behaviour disorder (RBD) and, together with transcranial ultrasonography, and determination of alpha-synuclein in certain tissues, should be considered as a reliable marker for the phenoconversion of idiopathic RBD (iRBD) to a synucleopathy (Parkinson’s disease –PD- or Lewy body dementia -LBD). The possible role in the pathogenesis of RBD of other neurotransmitters such as noradrenaline, acetylcholine, and excitatory and inhibitory neurotransmitters; hormones such as melatonin, and proinflammatory factors have also been suggested by recent reports. In general, brain perfusion and brain glucose metabolism studies have shown patterns resembling partially those of PD and LBD. Finally, the results of structural and functional MRI suggest the presence of structural changes in deep gray matter nuclei, cortical gray matter atrophy, and alterations in the functional connectivity within the basal ganglia, the cortico-striatal, and the cortico-cortical networks, but they should be considered as preliminary.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
| | - Elena García-Martín
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|