1
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
2
|
Mohamed AA, Faragalla S, Khan A, Flynn G, Rainone G, Johansen PM, Lucke-Wold B. Neurosurgical and pharmacological management of dystonia. World J Psychiatry 2024; 14:624-634. [PMID: 38808085 PMCID: PMC11129150 DOI: 10.5498/wjp.v14.i5.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Dystonia characterizes a group of neurological movement disorders characterized by abnormal muscle movements, often with repetitive or sustained contraction resulting in abnormal posturing. Different types of dystonia present based on the affected body regions and play a prominent role in determining the potential efficacy of a given intervention. For most patients afflicted with these disorders, an exact cause is rarely identified, so treatment mainly focuses on symptomatic alleviation. Pharmacological agents, such as oral anticholinergic administration and botulinum toxin injection, play a major role in the initial treatment of patients. In more severe and/or refractory cases, focal areas for neurosurgical intervention are identified and targeted to improve quality of life. Deep brain stimulation (DBS) targets these anatomical locations to minimize dystonia symptoms. Surgical ablation procedures and peripheral denervation surgeries also offer potential treatment to patients who do not respond to DBS. These management options grant providers and patients the ability to weigh the benefits and risks for each individual patient profile. This review article explores these pharmacological and neurosurgical management modalities for dystonia, providing a comprehensive assessment of each of their benefits and shortcomings.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Steven Faragalla
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Asad Khan
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Garrett Flynn
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gersham Rainone
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Phillip Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
3
|
Marie V. What have we learned about the biology of dystonia from deep brain stimulation? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:481-491. [PMID: 37482401 DOI: 10.1016/bs.irn.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Deep brain stimulation has dramatically changed the management of patients with dystonia, therapeutic approach of dystonia with marked improvement of dystonia and functional disability. However, despite decades of experience and identification of good prognosis factors, prediction of beneficial effect at the individual level is still a challenge. There is inter-individual variability in therapeutic outcome. Genetic factors are identified but subgroups of patients still have relapse or worsening of dystonia in short or long term. Possible "biological factors" underlying such a difference among patients are discussed, including structural or functional differences including altered plasticity.
Collapse
Affiliation(s)
- Vidailhet Marie
- Sorbonne Université, Paris Brain Institute - ICM, Inserm CNRS, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France.
| |
Collapse
|
4
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
5
|
Zhao H, Wang W, Lin T, Gong L. Serum Metabolomics of Benign Essential Blepharospasm Using Liquid Chromatography and Orbitrap Mass Spectrometry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6876327. [PMID: 36452462 PMCID: PMC9704060 DOI: 10.1155/2022/6876327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2024]
Abstract
Background Benign essential blepharospasm (BEB) is a form of focal dystonia that causes excessive involuntary spasms of the eyelids. Currently, the pathogenesis of BEB remains unclear. This study is aimed at investigating the serum metabolites profiles in patients with BEB and healthy control and to identify the mechanism and biomarkers of this disease. Methods 30 patients with BEB and 33 healthy controls were recruited for this study. We conducted the quantitative and nontargeted metabolomics analysis of the serum samples from 63 subjects by using liquid chromatography and Orbitrap mass spectrometry (LC-Orbitrap MS). Multivariate statistical analysis was performed to detect and identify different metabolites between the two groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and receiver operating characteristic (ROC) curve analysis of the altered metabolites were performed. Results A total of 134 metabolites were found and identified. The metabolites belonged to several metabolic pathways including phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, linoleic acid metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, sphingolipid metabolism, glycosphingolipid biosynthesis, leucine and isoleucine biosynthesis, and vitamin B6 metabolism. Eight metabolites were identified as the potential biomarkers. Conclusions These results demonstrated that serum metabolic profiling of BEB patients was significantly different from healthy controls based on LC-Orbitrap MS. Besides, metabolomics might provide useful information for a better understanding of BEB.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| |
Collapse
|
6
|
Estrella-Parra EA, Espinosa-González AM, García-Bores AM, Nolasco-Ontiveros E, Rivera-Cabrera JC, Hernández-Delgado CT, Peñalosa-Castro I, Avila-Acevedo JG. Metabolomics: From Scientific Research to the Clinical Diagnosis. PRINCIPLES OF GENETICS AND MOLECULAR EPIDEMIOLOGY 2022:77-86. [DOI: 10.1007/978-3-030-89601-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients. Parkinsonism Relat Disord 2021; 91:48-54. [PMID: 34482194 DOI: 10.1016/j.parkreldis.2021.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. METHODS Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. RESULTS A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = -0.3, p < 0.01), depression (rs = -0.3, p < 0.01) and fatigue (rs = -0.2, p = 0.04). CONCLUSION This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options.
Collapse
|
8
|
Kilic-Berkmen G, Wright LJ, Perlmutter JS, Comella C, Hallett M, Teller J, Pirio Richardson S, Peterson DA, Cruchaga C, Lungu C, Jinnah HA. The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Front Neurol 2021; 12:660909. [PMID: 33897610 PMCID: PMC8060489 DOI: 10.3389/fneur.2021.660909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal postures, repetitive movements, or both. Research in dystonia has been challenged by several factors. First, dystonia is uncommon. Dystonia is not a single disorder but a family of heterogenous disorders with varied clinical manifestations and different causes. The different subtypes may be seen by providers in different clinical specialties including neurology, ophthalmology, otolaryngology, and others. These issues have made it difficult for any single center to recruit large numbers of subjects with specific types of dystonia for research studies in a timely manner. The Dystonia Coalition is a consortium of investigators that was established to address these challenges. Since 2009, the Dystonia Coalition has encouraged collaboration by engaging 56 sites across North America, Europe, Asia, and Australia. Its emphasis on collaboration has facilitated establishment of international consensus for the definition and classification of all dystonias, diagnostic criteria for specific subtypes of dystonia, standardized evaluation strategies, development of clinimetrically sound measurement tools, and large multicenter studies that document the phenotypic heterogeneity and evolution of specific types of dystonia.
Collapse
Affiliation(s)
- Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Laura J. Wright
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel S. Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - Jan Teller
- Dystonia Medical Research Foundation, Chicago, IL, United States
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - David A. Peterson
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, United States
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|