1
|
Mangalam M, Kelty-Stephen DG, Seleznov I, Popov A, Likens AD, Kiyono K, Stergiou N. Older adults and individuals with Parkinson's disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci Rep 2024; 14:4117. [PMID: 38374371 PMCID: PMC10876602 DOI: 10.1038/s41598-024-54583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, 79011, Ukraine
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Department of Physical Education, and Sport Science, Aristotle University, 570 01, Thessaloniki, Greece
| |
Collapse
|
2
|
Bayot M, Dujardin K, Gérard M, Braquet A, Tard C, Betrouni N, Defebvre L, Delval A. The contribution of executive control dysfunction to freezing of gait in Parkinson's disease. Clin Neurophysiol 2023; 152:75-89. [PMID: 37356311 DOI: 10.1016/j.clinph.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/06/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE An executive dysfunction is supposed to contribute to freezing of gait (FoG) in Parkinson's disease. We aimed to investigate at a behavioral and cortical levels whether an attentional load (particularly, a conflicting situation) can specifically impact preparation and execution phases of step initiation in parkinsonian patients with FoG. METHODS Fifteen patients with FoG, 16 without and 15 controls performed an adapted version of the Attention Network Test, with step initiation as response instead of the standard manual keypress. Kinetic and kinematic features of gait initiation as well as high-resolution electroencephalography were recorded during the task. RESULTS Patients with FoG presented an impaired executive control. Step execution time was longer in parkinsonian patients. However, the executive control effect on step execution time was not different between all groups. Compared to patients, controls showed a shorter step initiation-locked alpha desynchronization, and an earlier, more intense and shorter beta desynchronization over the sensorimotor cortex. Even though controls were faster, the induced alpha and beta activity associated with the effect of executive control didn't differ between patients and controls. CONCLUSIONS Tasks of conflict resolution lead to a comparable alteration of step initiation and its underlying brain activity in all groups. Links between executive control, gait initiation and FoG seem more complex than expected. SIGNIFICANCE This study questions the cognitive hypothesis in the pathophysiology of freezing of gait. Executive dysfunction is associated with FoG but is not the main causal mechanism since the interaction between attention and motor preparation didn't provoke FoG.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Morgane Gérard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | | | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
3
|
Korkusuz S, Seçkinoğulları B, Özcan A, Demircan EN, Çakmaklı GY, Armutlu K, Yavuz F, Elibol B. Effects of freezing of gait on balance in patients with Parkinson's disease. Neurol Res 2023; 45:407-414. [PMID: 36413435 DOI: 10.1080/01616412.2022.2149510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of the study was to evaluate the effects of freezing of gait (FOG) on static and dynamic balance. METHODS Twenty patients with Parkinson's disease with and without FOG [PD+FOG (68,6±6,39 years) and PD-FOG group (70,6±4,57 years)] and 10 healthy individuals (68,4±4,92 years) with similar demographic characteristics were included in the study. Balance was compared between the three groups. Balance was evaluated with clinical tests Limits of stability (LoS) and body sway were measured using the E-LINK FP3 Force Plate and the Korebalance Balance Evaluation System, which measure the balance in static and dynamic conditions. Center of pressure (COP) change and average sway velocity were evaluated with the Zebris RehaWalk system. RESULTS Total and subscale scores of the Unified Parkinson's Disease Rating Scale were significantly higher in the PD+FOG group (p<0.05). The balance test results for both groups were similar (p>0.05). The PD+FOG group performed worse on the computerized static balance tests, the COP analysis, and the dynamic balance total score than the other two groups (p<0.05). The PD+FOG group had significantly greater sustained weight deviation than the healthy controls (p<0.05). Patients with Parkinson's disease had a lower LoS in the posterior direction than healthy controls (p<0.05). DISCUSSION FOG affects the dynamic balance more negatively than the static balance. In addition, FOG reduces LoS in the posterior direction and increases body sway in the anterior-posterior direction, which can lead to falls.
Collapse
Affiliation(s)
- Süleyman Korkusuz
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Büşra Seçkinoğulları
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ayşenur Özcan
- Department of Physical Therapy and Rehabilitation, Çankırı Karatekin University, Çankırı, Turkey
| | - Emine Nur Demircan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Gül Yalçın Çakmaklı
- School of Medicine, Neurology Department, Hacettepe University, Ankara, Turkey
| | - Kadriye Armutlu
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ferdi Yavuz
- Faculty of Health Sciences, European University of Lefke, Lefke, Cyprus
| | - Bülent Elibol
- School of Medicine, Neurology Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
5
|
Palmisano C, Beccaria L, Haufe S, Volkmann J, Pezzoli G, Isaias IU. Gait Initiation Impairment in Patients with Parkinson's Disease and Freezing of Gait. Bioengineering (Basel) 2022; 9:639. [PMID: 36354550 PMCID: PMC9687939 DOI: 10.3390/bioengineering9110639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 08/03/2023] Open
Abstract
Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Laura Beccaria
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Stefan Haufe
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer Science, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Gianni Pezzoli
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| |
Collapse
|
6
|
Landes RD, Glover A, Pillai L, Doerhoff S, Virmani T. Levodopa ONOFF-state freezing of gait: Defining the gait and non-motor phenotype. PLoS One 2022; 17:e0269227. [PMID: 35653359 PMCID: PMC9162361 DOI: 10.1371/journal.pone.0269227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Freezing in the levodopa-medicated-state (ON-state) is a debilitating feature of Parkinson’s disease without treatment options. Studies detailing the distinguishing features between people with freezing of gait that improves with levodopa and those whose freezing continues even on levodopa are lacking. Objective To characterize the gross motor, gait, and non-motor features of this phenotype. Methods Instrumented continuous gait was collected in the levodopa-medicated-state in 105 patients: 43 non-freezers (no-FOG), 36 with freezing only OFF-levodopa (OFF-FOG) and 26 with freezing both ON- and OFF-levodopa (ONOFF-FOG). Evaluation of motor and non-motor disease features was undertaken using validated scales. A linear mixed model with age, sex, disease duration, and motor UPDRS scores as covariates was used to determine differences in spatiotemporal gait and non-motor disease features among the groups. Results Compared to OFF-FOG, the ONOFF-FOG group had greater disease severity (on the Unified Parkinson’s disease Rating Scale) and worse cognition (on the Montreal Cognitive Assessment, Frontal Assessment Battery and Scales for Outcome in Parkinson’s disease-Cognition scales) and quality of life (on the PDQ-39), but similar mood (on the Hamilton depression and anxiety scales) and sleep quality (on Epworth sleepiness scale and RBD questionnaire). For several gait features, differences between the ONOFF-OFF groups were at least as large and in the opposite direction as differences between OFF-no groups, controlling for disease severity. Variability in ONOFF-FOG was greater than in other groups. Using results from our study and others, a power analysis for a potential future study reveals sample sizes of at least 80 ONOFF and 80 OFF-FOG patients would be needed to detect clinically meaningful differences. Conclusions Intra-patient variability in spatiotemporal gait features was much greater in ONOFF-FOG than in the other two groups. Our results suggest that multifactorial deficits may lead to ONOFF-FOG development.
Collapse
Affiliation(s)
- Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Aliyah Glover
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lakshmi Pillai
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Shannon Doerhoff
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Tuhin Virmani
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fransson PA, Nilsson MH, Rehncrona S, Tjernström F, Magnusson M, Johansson R, Patel M. Deep brain stimulation in the subthalamic nuclei alters postural alignment and adaptation in Parkinson's disease. PLoS One 2021; 16:e0259862. [PMID: 34905546 PMCID: PMC8670690 DOI: 10.1371/journal.pone.0259862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.
Collapse
Affiliation(s)
| | - Maria H. Nilsson
- Department of Health Sciences, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stig Rehncrona
- Department of Neurosurgery, Lund University, Lund, Sweden
| | | | - Måns Magnusson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Johansson
- Department of Automatic Control, Lund University, Lund, Sweden
| | - Mitesh Patel
- School of Medicine & Clinical Practice, Faculty of Science, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|