1
|
Cai N, Shi W, Chen R, Chen B, Li Y, Wang N. Cerebral-Cerebellar Cortical Activity and Connectivity Underlying Sensory Trick in Cervical Dystonia. Ann Clin Transl Neurol 2024; 11:2633-2644. [PMID: 39152615 PMCID: PMC11514925 DOI: 10.1002/acn3.52177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the activity and connectivity of cerebral and cerebellar cortices underlying the sensory trick (ST) effects in patients with cervical dystonia (CD), using electroencephalography (EEG). METHODS We recruited 15 CD patients who exhibited clinically effective ST and 15 healthy controls (HCs) who mimicked the ST maneuver. EEG signals and multiple-channel electromyography (EMG) were recorded simultaneously during resting and acting stages. EEG source analysis and functional connectivity were performed. To account for the effects of sensory processing, we calculated relative power changes as the difference in power spectral density between resting and the maneuver execution. RESULTS ST induced a decrease in low gamma (30-50 Hz) spectral power in the primary sensory and cerebellar cortices, which remained lower than in HCs during the maintenance period. Compared with HCs, patients exhibited consistently strengthened connectivity within the sensorimotor network during the maintenance period, particularly in the primary sensory-sensorimotor cerebellum connection. INTERPRETATION The application of ST resulted in altered cortical excitability and functional connectivity regulated by gamma oscillation in CD patients, suggesting that this effect cannot be solely attributed to motor components. The cerebellum may play important roles in mediating the ST effects.
Collapse
Affiliation(s)
- Nai‐Qing Cai
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Wu‐Xiang Shi
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ru‐Kai Chen
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Bo‐Li Chen
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Yu‐Rong Li
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ning Wang
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| |
Collapse
|
2
|
Listik C, Lapa JD, Casagrande SCB, Barbosa ER, Iglesio R, Godinho F, Duarte KP, Teixeira MJ, Cury RG. Exploring clinical outcomes in patients with idiopathic/inherited isolated generalized dystonia and stimulation of the subthalamic region. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:263-270. [PMID: 37059436 PMCID: PMC10104753 DOI: 10.1055/s-0043-1764416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable. OBJECTIVE To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement. METHODS The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects. RESULTS Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00-98.00) and 20.60 ± 7.80 (13.00-32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003). CONCLUSIONS These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.
Collapse
Affiliation(s)
- Clarice Listik
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Jorge Dornellys Lapa
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | | | - Egberto Reis Barbosa
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Ricardo Iglesio
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Fabio Godinho
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Kleber Paiva Duarte
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Manoel Jacobsen Teixeira
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| |
Collapse
|
3
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
4
|
Cho HJ, Waugh R, Wu T, Panyakaew P, Mente K, Urbano D, Hallett M, Horovitz SG. Role of supplementary motor area in cervical dystonia and sensory tricks. Sci Rep 2022; 12:21206. [PMID: 36481868 PMCID: PMC9731945 DOI: 10.1038/s41598-022-25316-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sensory trick is a characteristic feature of cervical dystonia (CD), where a light touch on the area adjacent to the dystonia temporarily improves symptoms. Clinical benefit from sensory tricks can be observed before tactile contact is made or even by imagination. The supplementary motor area (SMA) may dynamically interact with the sensorimotor network and other brain regions during sensory tricks in patients with CD. In this study, we examined the functional connectivity of the SMA at rest and during sensory trick performance and imagination in CD patients compared to healthy controls using functional magnetic resonance imaging. The functional connectivity between the SMA and left intraparietal sulcus (IPS) region was lower in CD patients at rest and it increased with sensory trick imagination and performance. SMA-right cerebellum connectivity also increased with sensory trick imagination in CD patients, while it decreased in healthy controls. In CD patients, SMA connectivity increased in the brain regions involved in sensorimotor integration during sensory trick performance and imagination. Our study results showed a crucial role of SMA in sensorimotor processing during sensory trick performance and imagination and suggest the IPS as a novel potential therapeutic target for brain modulation.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca Waugh
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Tianxia Wu
- Clinical Trial Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pattamon Panyakaew
- Department of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Faculty of Medicine, Chulalongkorn University and King, Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Karin Mente
- Departments of Neurology and Pathology, Case Western Reserve University, Cleveland, USA
- Neurology Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Cleveland Alzheimer's Disease Research Center, Cleveland, OH, USA
| | - Demelio Urbano
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Park S, Jeong H, Chung YA, Kang I, Kim S, Song IU, Huh R. Changes of regional cerebral blood flow after deep brain stimulation in cervical dystonia. EJNMMI Res 2022; 12:47. [PMID: 35943616 PMCID: PMC9363547 DOI: 10.1186/s13550-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Cervical dystonia is considered as a network disorder affecting various brain regions in recent days. Presumably, deep brain stimulation (DBS) of the internal segment of globus pallidus (GPi) may exert therapeutic effects for cervical dystonia through modulation of the aberrant brain networks. In the present study, we investigated postoperative regional cerebral blood flow (rCBF) changes after GPi DBS using single-photon emission computed tomography (SPECT) to identify significant activity changes in several relevant brain areas of cervical dystonia patients. Methods A total of 9 patients with idiopathic cervical dystonia were recruited, and SPECT scans were conducted at baseline and 3 months after the bilateral GPi DBS. Voxel-wise changes of rCBF were analyzed using Statistical Parametric Mapping. Symptom severity of dystonia was measured using Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) at the baseline, and 1 week, and 3 months after GPi DBS. Results At the 3-month follow-up after DBS, rCBF was increased in the left pons and right postcentral gyrus and decreased in the left middle frontal gyrus, left cerebellum, right putamen and pallidum, and left thalamus (p < 0.001). Severity of cervical dystonia assessed by TWSTRS was significantly decreased at 1-week and 3-month follow-up (p = 0.004). Conclusions Clinical improvement of cervical dystonia after GPi DBS may be accompanied by rCBF changes in several brain areas of the cortico-basal ganglia-cerebellar network which are important for sensorimotor integration.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-An Chung
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Seunghee Kim
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Ryoong Huh
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
6
|
Huang X, Zhang M, Li B, Shang H, Yang J. Structural and functional brain abnormalities in idiopathic cervical dystonia: A multimodal meta-analysis. Parkinsonism Relat Disord 2022; 103:153-165. [DOI: 10.1016/j.parkreldis.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
7
|
Huang X, Lin J, Shang H, Yang J. Voxel-based meta-analysis of gray matter abnormalities in idiopathic dystonia. J Neurol 2022; 269:2862-2873. [PMID: 35013788 DOI: 10.1007/s00415-022-10961-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroimaging studies have reported gray matter changes in patients with idiopathic dystonia but with considerable variations. Here, we aimed to investigate the convergence of dystonia-related gray matter changes across studies. METHODS The whole brain voxel-based morphometry studies comparing idiopathic dystonia and healthy controls were systematically searched in the PubMed, Web of Science and Embase. Meta-analysis of gray matter changes was performed using the anisotropic effect size-based signed differential mapping. RESULTS Twenty-eight studies comparing 701 idiopathic dystonia patients and 712 healthy controls were included in the meta-analysis. Compared to healthy controls, idiopathic dystonia patients showed increased gray matter in bilateral precentral and postcentral gyri, bilateral putamen and pallidum, right insula, and left supramarginal gyrus, while decreased gray matter in bilateral temporal poles, bilateral supplementary motor areas, right angular gyrus, inferior parietal gyrus and precuneus, left insula and inferior frontal gyrus. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected. Subgroup analyses of different phenotypes of dystonia were performed to further confirm the above findings. CONCLUSION The meta-analysis showed that consistent widespread gray matter abnormalities were shared in different subtypes of idiopathic dystonia and were not restricted to the corticostriatal circuits.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|