1
|
Thiruvengadam R, Singh CD, Kondapavuluri BK, Gurusamy S, Venkidasamy B, Thiruvengadam M. Biomarkers in lung cancer treatment. Clin Chim Acta 2025; 572:120267. [PMID: 40154724 DOI: 10.1016/j.cca.2025.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Lung carcinoma (LC) is the primary cause of millions of deaths worldwide. As LC is typically diagnosed at a later stage, its prevention and treatment are difficult. The pathological basis of both types of LC, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), is highly determined. The only treatments available for LC are surgical resection and chemotherapy, which require sophisticated new treatments. Biomarkers are promising treatment options, because they can be used for both diagnosis and treatment. Typical signaling molecules known as biomarkers identify abnormalities in cellular activity and serve as prognostic and diagnostic indicators. Biomarkers show great promise in clinical decision making, early and quick diagnosis, recurrence of illness, and tracking the effectiveness of cancer treatments. This review provides an overview of biomarkers, their benefits, and future directions for those new to the field of biomarker research in LC therapy.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, India
| | - Carmelin Durai Singh
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, India
| | | | - Srisugamathi Gurusamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Baskar Venkidasamy
- Center for Biosciences and Biotechnology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dokhanchi M, Javaherdehi AP, Raad M, Khalilollah S, Mahdavi P, Razizadeh MH, Zafarani A. Natural Killer Cells in Cancers of Respiratory System and Their Applications in Therapeutic Approaches. Immun Inflamm Dis 2024; 12:e70079. [PMID: 39588940 PMCID: PMC11590036 DOI: 10.1002/iid3.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Cancer is still regarded as a major worldwide health issue due to its high health and socioeconomic burden. Currently, lung cancer is the most common cause of cancer-related fatalities globally. Additionally, mesotheliomas and other cancers of the respiratory system, including those of the trachea, larynx, and bronchi, are also posing a significant health threat. Natural killer (NK) cells are lymphocytes of the innate immune system involved in response against cancer. OBJECTIVE This review discussed recent findings in the context of NK cell activity in the immune surveillance of respiratory system cancers and NK cell-based treatments to combat those malignancies. RESULTS The presence of natural killer cells in the tumor microenvironment is shown to be associated with a higher survival rate in patients with various malignancies. However, cancerous cells benefit from several mechanisms to evade natural killer cell-mediated cytotoxicity, including reduced major histocompatibility complex I expression, shedding of ligands, upregulation of inhibitory receptors, and release of soluble factors. Using NK cells to design therapeutic approaches may enhance antitumor immunity and improve clinical outcomes. Clinical trials investigating the use of natural killer cells in combination with cytokine stimulation or immune checkpoint inhibitors have exhibited promising results in various respiratory system malignancies. CONCLUSION Respiratory system cancers present significant health challenges worldwide, and while NK cells play a crucial role in tumor surveillance, tumors often evade NK cell responses through various mechanisms. Advances in NK cell-based therapies, including CAR-NK cells, immune checkpoint inhibitors, and cytokine stimulation, have shown promising outcomes in tackling these tactics. However, challenges such as the immunosuppressive tumor microenvironment persist. Ongoing research is crucial to improve NK cell therapies by targeting autophagy, modulating miRNAs, and developing combinatorial approaches to enhance treatment efficacy for respiratory cancers.
Collapse
Affiliation(s)
- Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mohammad Raad
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Pooya Mahdavi
- College of Public HealthUniversity of South FloridaTampaFloridaUSA
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Alireza Zafarani
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Hematology & Blood Banking, School of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Wei S, Xing J, Lu K, Wang K, Yu W. NPM3 as a novel oncogenic factor and poor prognostic marker contributes to cell proliferation and migration in lung adenocarcinoma. Hereditas 2023; 160:27. [PMID: 37254219 PMCID: PMC10230701 DOI: 10.1186/s41065-023-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent advances in targeted therapies and immunotherapies, the clinical benefit remains limited. Therefore, there is an urgent need to further investigate the molecular mechanisms underlying lung cancer. The aim of this study was to investigate the expression and function of NPM3 in the tumor microenvironment of lung adenocarcinoma (LUAD). METHODS We utilized bioinformatics tools and databases, including UALCAN, GEPIA2, HPA, and Sangerbox, to analyze NPM3 expression in LUAD samples and its association with prognosis and mutational landscape. NPM3 expression in various cell types was assessed at the single cell level using the TISCH database. We also used algorithms such as TIMER and EPIC to explore the crosstalk between NPM3 expression and immune features. KEGG enrichment analysis was performed to identify potential signaling pathways of NPM3. Finally, we employed siRNA knockdown strategy to investigate the effect of NPM3 on LUAD cell proliferation and migration in vitro. RESULTS NPM3 was significantly upregulated in LUAD tissues and was strongly associated with poor prognosis and TP53 gene mutations. Single-cell sequencing analysis revealed that NPM3 was expressed in immune cells (dendritic cells and monocytes/macrophages) in the tumor microenvironment. Moreover, NPM3 expression was negatively associated with immune B cell and CD4 T cell infiltration, as well as with several immune-related genes (including CCL22, CXCR2, CX3CR1, CCR6, HLA-DOA, HLA-DQA2). KEGG enrichment analysis indicated that NPM3 expression was associated with cell cycle, CAMs, and NSCLC pathway genes. Finally, in vitro experiments showed that NPM3 knockdown inhibited LUAD cell proliferation and migration in NCI-H1299 and SPC-A1 cells, and suppressed the expression of CCNA2 and MAD2L1. CONCLUSION Elevated NPM3 expression predicts poor clinical outcome and an immunosuppressive microenvironment in LUAD tissues. NPM3 promotes LUAD progression by promoting cell proliferation and migration, and targeting NPM3 may represent a novel therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Shan Wei
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, People's Republic of China
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China
- Ningbo University School of Medicine, Zhejiang Province, Ningbo, People's Republic of China
| | - Kaining Lu
- Department of Urology, The Affiliated First Hospital of Ningbo University (Ningbo First Hospital), No.59, Liuting Street, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Therapeutic strategies for non-small cell lung cancer: Experimental models and emerging biomarkers to monitor drug efficacies. Pharmacol Ther 2023; 242:108347. [PMID: 36642389 DOI: 10.1016/j.pharmthera.2023.108347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.
Collapse
|
5
|
Koller M, Musoro JZ, Tomaszewski K, Coens C, King MT, Sprangers MA, Groenvold M, Cocks K, Velikova G, Flechtner HH, Bottomley A. Minimally important differences of EORTC QLQ-C30 scales in patients with lung cancer or malignant pleural mesothelioma – Interpretation guidance derived from two randomized EORTC trials. Lung Cancer 2022; 167:65-72. [DOI: 10.1016/j.lungcan.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/09/2022]
|
6
|
Liu B, Yang S. A Five Autophagy-Related Long Non-Coding RNA Prognostic Model for Patients with Lung Adenocarcinoma. Int J Gen Med 2021; 14:7145-7158. [PMID: 34737609 PMCID: PMC8558832 DOI: 10.2147/ijgm.s334601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Lung adenocarcinoma is the most common pathological type among non-small cell lung cancer. Although huge progress has been made in terms of early diagnosis and precision treatment in recent years, the overall 5-year survival rate of a patient remains low. In our study, we try to construct an autophagy-related lncRNA prognostic signature that may guide clinical practice. Methods The mRNA and lncRNA expression matrix of lung adenocarcinoma patients were retrieved from the TCGA database. Next, we constructed a co-expression network of lncRNAs and autophagy-related genes. Lasso regression and multivariate Cox regression were then applied to establish a prognostic risk model. Subsequently, a risk score was generated to differentiate the high and low risk groups and a ROC curve and nomogram to visualize the predictive ability of the current signature. Finally, gene ontology and pathway enrichment analysis were executed via GSEA. Results A total of 1,703 autophagy-related lncRNAs were screened and five autophagy-related lncRNAs (LINC01137, AL691432.2, LINC01116, AL606489.1, and HLA-DQB1-AS1) were finally included in our signature. Judging from univariate (HR=1.075, 95% CI=1.046–1.104) and multivariate (HR=1.088, 95% CI=1.057−1.120) Cox regression analysis, the risk score is an independent factor for LUAD patients. Further, the AUC value based on the risk score for 1-year, 3-years, and 5-years, was 0.735, 0.672, and 0.662, respectively, indicating a reliable model. Drug sensitivity analysis revealed low risk patients were more sensitive to Gemcitabine and Gefitinib, while high risk patients had a better response to Paclitaxel and Erlotinib. Moreover, the lncRNAs included in our signature were primarily enriched in the autophagy process, metabolism, p53 pathway, and JAK/STAT pathway. Finally, a multi-omics analysis of correlated genes showed CFLAR overexpressed in the tumor sample, while GAPDH and MLST8 had a slightly higher expression in the normal sample. Conclusion Overall, our study indicated that the prognostic model we generated had certain predictability for LUAD patients’ prognosis and the related genes might be potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Boxuan Liu
- Department of Critical Care and Respiratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shuanying Yang
- Department of Critical Care and Respiratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
7
|
Lv J, Zhu S, Chen H, Xu Y, Su Q, Yu G, Ma W. Paeonol inhibits human lung cancer cell viability and metastasis in vitro via miR-126-5p/ZEB2 axis. Drug Dev Res 2021; 83:432-446. [PMID: 34636432 DOI: 10.1002/ddr.21873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/06/2022]
Abstract
Paeonol exerted an effect in lung cancer, but the underlying mechanism remained vague. In this research, we assessed the effects of Paeonol and microRNA (miR)-126-5p on the viability, migration, invasion, and epithelial-mesenchymal transition (EMT) of lung cancer cells. Lung cancer cells and BEAS-2B cells were treated with Paeonol, and viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The migration and invasion of lung cancer cells after treatment with Paeonol at 40 μg/mL or 80 μg/mL were detected by wound healing assay and Transwell assay, respectively. The effects of Paeonol on transforming growth factor-β1 (TGF-β1)-induced EMT and relative expressions of EMT-related proteins were determined using Western blot. The target gene of miR-126-5p and the binding sites between them were predicted by TargetScan, and confirmed using dual-luciferase reporter assay. Relative expressions of miR-126-5p, its target gene and EMT-related proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Rescue assay was performed to analyze the relation between Paeonol and miR-126-5p. Paeonol down-regulated cell viability and inhibited migration, invasion and TGF-β1-induced EMT while up-regulating miR-126-5p expression in lung cancer cells as the dose increased. However, miR-126-5p inhibitor could reverse the effect of Paeonol. ZEB2 was the target gene of miR-126-5p, and silencing ZEB2 expression reversed the effects of miR-126-5p downregulation. Paeonol also regulated the expression of ZEB2 in lung cancer cells, and this regulation depends on the regulation of miR-126-5p. Paeonol inhibits human lung cancer cell viability and metastasis via the miR-126-5p/ZEB2 axis, and could be adopted as a potential agent for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Lv
- Department of Traditional Chinese Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Shibing Zhu
- Department of Traditional Chinese Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Huiping Chen
- Department of Endocrinology, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Ying Xu
- Department of Special Medical Treatment, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Qingyu Su
- ICU, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Guofen Yu
- Special Needs Ward, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Wei Ma
- Department of Emergency, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| |
Collapse
|
8
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
9
|
Prognostic value and therapeutic implications of expanded molecular testing for resected early stage lung adenocarcinoma. Lung Cancer 2020; 143:60-66. [PMID: 32208298 DOI: 10.1016/j.lungcan.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study aimed to evaluate the prognostic and potential therapeutic value of expanded molecular testing of resected early-stage lung ACA. METHODS We analyzed 324 patients who underwent lobectomy and lymphadenectomy for clinical Stage I&II lung ACA between 2011-2017. Molecular testing was routinely performed, first by PCR-based Sanger sequencing and FISH and then expanded to a 20 and then 50-gene next generation sequencing (NGS) panel. The frequency of mutations by testing method and their association with disease-free (DFS) and overall survival (OS) were tested. RESULTS A total of 241 patients (74.4%) had at least one somatic mutation detected, with KRAS exon 2 (38.1%) and EGFR (17.9%) being the most common. TP53 was the most frequent co-existing mutation. Detection of at least one mutation increased from 49% with selective PCR/FISH testing to 82% with limited NGS/FISH, and 91% with extended NGS/FISH (p < 0.001). The rate of actionable mutations increased from 18% to 32% and 45% with expansion of molecular testing, respectively (p = 0.001). Using NGS, an additional 10 cases with EGFR mutations, and other rare mutations were found, including BRAF (5.9%), MET (5.6%), ERBB2 (4.1%), PIK3CA (2.3%), and DDR2 (2.1%). The expansion of FISH testing resulted in one additional detection of ROS1 and RET (1%) rearrangement. KRAS mutation was associated with worse DFS (HR 1.87; 95%CI 1.14-3.06) and OS (HR 2.09; 95%CI 1.11-3.92). BRAF mutation detected in NGS tested patients was also associated with decreased DFS (HR3.80; 95%CI 1.46-9.89) and OS (HR 7.37; 95%CI 2.36-22.99) on multivariate analysis. CONCLUSION The expansion of molecular testing has resulted in a substantial increase in the detection of potentially therapeutically significant mutations in resected early-stage ACA. KRAS and BRAF mutation status by NGS was prognostic for relapse and survival. These data emphasize opportunities for clinical trials in a growing number surgical ACA patients with available targeted therapies.
Collapse
|
10
|
A five-long non-coding RNA signature with the ability to predict overall survival of patients with lung adenocarcinoma. Exp Ther Med 2019; 18:4852-4864. [PMID: 31777562 PMCID: PMC6862666 DOI: 10.3892/etm.2019.8138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies have indicated that the abnormal expression of certain long non-coding RNAs (lncRNAs) is linked to the overall survival (OS) of patients with lung adenocarcinoma (LUAD). The aim of the present study was to establish an lncRNA signature to predict the survival of patients with LUAD. The gene expression profiles and associated clinical information of patients with LUAD were downloaded from The Cancer Genome Atlas database. The cohort was randomly sub-divided into training and verification cohorts. Univariate Cox regression analysis was performed on differentially expressed lncRNAs in the training cohort to select candidate lncRNAs closely associated with survival. Next, a risk score (RS) model consisting of 5 lncRNAs was established by multivariate Cox regression analysis on candidate lncRNAs. Using the median RS obtained from the training cohort as a cut-off point, patients were classified into high- and low-risk groups. Kaplan-Meier survival analysis revealed a significant difference in OS between high- and low-risk groups. The survival prediction ability of the 5-lncRNA signature was further tested in the verification and total cohorts. The results proved that the 5-lncRNA signature had good reliability and stability in survival prediction for patients with LUAD. The univariate Cox regression analysis for the 5-lncRNA signature in each cohort indicated that the 5-lncRNA signature was closely associated with survival. Multivariate Cox regression analysis and stratification analysis proved that the prognostic signature was an independent predictor of survival for patients with LUAD. In addition, functional enrichment analysis indicated that the 5 prognostic lncRNAs may be involved in the tumorigenesis of LUAD through cancer-associated pathways and biological processes. Taken together, the present study provided a 5-lncRNA signature that may serve as an independent survival predictor for patients with LUAD.
Collapse
|
11
|
Clark-Knowles KV, Dewar-Darch D, Jardine KE, Coulombe J, Daneshmand M, He X, McBurney MW. Modulating SIRT1 activity variously affects thymic lymphoma development in mice. Exp Cell Res 2018; 371:83-91. [PMID: 30059665 DOI: 10.1016/j.yexcr.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/25/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
SIRT1 is a protein deacetylase with a broad range of biological functions, many of which are known to be important in carcinogenesis, however much of the literature regarding the role of SIRT1 in cancer remains conflicting. In this study we assessed the effect of SIRT1 on the initiation and progression of thymic T cell lymphomas. We employed mouse strains in which SIRT1 activity was absent or could be reversibly modulated in conjunction with thymic lymphoma induction using either the N-nitroso-N-methylurea (NMU) carcinogenesis or the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) transgene. Decreased SIRT1 activity reduced the development of thymic lymphomas in the NMU-treated mice but was permissive for the formation of lung adenomas. Conversely, in the NPM-ALK transgenic mice, decreased SIRT1 activity had a modest promoting effect in the development of thymic lymphomas. The results of the work presented here add to the growing body of evidence that sirt1 is neither an outright oncogene nor a tumor suppressor. These opposing results in two models of the same disease suggest that the influence of sirt1 on carcinogenesis may lie in a role in tumor surveillance.
Collapse
Affiliation(s)
| | - Danielle Dewar-Darch
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Karen E Jardine
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Josée Coulombe
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Manijeh Daneshmand
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Xiaohong He
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Michael W McBurney
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
12
|
Abstract
Lung cancer diagnosis and ancillary testing are increasingly relying on cytology and small biopsy specimens obtained via minimally invasive means. Paired with traditional immunohistochemical characterization of tumors, biomarker testing and comprehensive genomic profiling are becoming essential steps in the workup of lung cancer to identify targetable alterations and guide optimal therapy selection. Recent advances in immune checkpoint inhibitor therapy have led to an increasingly complex and unresolved landscape for tumor PD-L1 testing. The prevalence and importance of lung cancer cytology specimens are growing, with more required by the cytopathologist in directing the care of patients with lung cancer.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Mezni F, Mlika M, Boussen H, Ghedira H, Fenniche S, Faten T, Loriot MA. About molecular profile of lung cancer in Tunisian patients. J Immunoassay Immunochem 2018; 39:99-107. [PMID: 29308976 DOI: 10.1080/15321819.2017.1407339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Molecular profile of lung cancer is well known in developed countries. These countries reached the era of liquid biopsies, immunotherapy, and urine circulating tumor DNA. The discrepancies between developed countries and developing ones are becoming deeper. Because of a lack of data in Tunisia, we tried to analyze the molecular profile of non-small-cell carcinomas and to assess the morphologic subtype of adenocarcinomas according to their mutational profile. METHODS We performed molecular analyses in Tunisia and in France of 84 patients who were able to afford the cost of the diagnostic techniques carcinomas diagnosed between 2012 and 2015. The diagnosis was established in our Department of Pathology and the percentage of the tumor cells was estimated by the pathologists. The paraffin-embedded blocks were sent to France, in 41 cases and were analyzed in Tunisia in 43 cases. A next-generation sequencing was performed in France and a real-time polymerase chain reaction (PCR) was performed in our country. RESULTS During the period of study, 1122 lung cancers were diagnosed and 87 patients were able to afford the molecular analyses cost. The mean age of these patients was 53 years. The sex ratio reached 1.9. The molecular analyses were not performed in three cases because of a low tumor cell rate. EGFR mutations were present in 16 cases: 3 men and 13 women. The adenocarcinomas were classified as acinar in 11 cases and solid in 5 cases. ALK-EML4 translocation was present in six cases. Mutations of BRAF, KRAS, P53, and ERBB4 genes were, respectively, detected in two cases, five cases (3 codon 12), three cases, and one case. CONCLUSION This study made us wonder about the possibility of implementing molecular techniques in low-income countries and about the necessity of optimizing the financial resources.
Collapse
Affiliation(s)
- Faouzi Mezni
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Mona Mlika
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Hamouda Boussen
- c Department of Medical Oncology , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Habib Ghedira
- d Department of Pulmonology, Pav III , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Soraya Fenniche
- e Department of Pulmonology, Pav D , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia
| | - Talmoudi Faten
- b Research Unit Department of Pathology , Tunis , Tunisia
| | - Marie-Anne Loriot
- f Inserm UMR_S1147, Centre Universitaire des Saints-Pères , Paris , France.,g Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,h Service de Biochimie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Biology , Paris , France
| |
Collapse
|
14
|
Rekhtman N, Buonocore DJ, Rudomina D, Friedlander M, Dsouza C, Aggarwal G, Arcila M, Edelweiss M, Lin O. Novel Modification of HistoGel-Based Cell Block Preparation Method: Improved Sufficiency for Molecular Studies. Arch Pathol Lab Med 2017; 142:529-535. [PMID: 29095036 DOI: 10.5858/arpa.2017-0030-oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT - Cell block preparation methods vary substantially across institutions and are frequently suboptimal. The growing importance of biomarker testing in the era of targeted therapies makes optimization of cell block preparation critically important. OBJECTIVE - To develop an improved cell block preparation method. DESIGN - Ex vivo fine-needle aspirates and scrapes from surgically resected tumors were used to develop an improved HistoGel (Thermo Fisher Scientific, Waltham, Massachusetts)-based cell block preparation method. Cellularity yield with the new versus the standard method was assessed in ex vivo split samples and in consecutive clinical fine-needle aspirates processed before (n = 100) and after (n = 100) the new method was implemented in our laboratory. Sufficiency of cell block material for potential molecular studies was estimated by manual cell quantitation. RESULTS - The key modification in the new method was pretreatment of the pelleted cells with 95% ethanol before the addition of HistoGel (HistoGel + ethanol method). In addition, we optimized the melting conditions of HistoGel and added a dark, inorganic marker to the cell pellets to highlight the desired level of sectioning during microtomy. Cell blocks from ex vivo split samples showed that the HistoGel + ethanol method yielded, on average, an 8.3-fold (range, 1-20) greater cellularity compared with the standard HistoGel-only method. After the switch from the standard HistoGel method to the modified method in our clinical practice, sufficiency of positive fine-needle aspirates for some molecular studies increased from 72% to 97% ( P = .002). CONCLUSIONS - We describe a simple and readily adoptable modification of the HistoGel method, which results in substantial improvement in cell capture in cell blocks, leading to a significant increase in sufficiency for potential molecular and other ancillary studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oscar Lin
- From the Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. Drs Rekhtman and Buonocore contributed equally in the preparation of this article and should be considered as cofirst authors
| |
Collapse
|
15
|
Neu J, Dziunycz PJ, Dzung A, Lefort K, Falke M, Denzler R, Freiberger SN, Iotzova-Weiss G, Kuzmanov A, Levesque MP, Dotto GP, Hofbauer GFL. miR-181a decelerates proliferation in cutaneous squamous cell carcinoma by targeting the proto-oncogene KRAS. PLoS One 2017; 12:e0185028. [PMID: 28931048 PMCID: PMC5607211 DOI: 10.1371/journal.pone.0185028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 09/05/2017] [Indexed: 01/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is the second most common human skin cancer with a rapidly increasing incidence among the Caucasian population. Among the many regulators, responsible for cancer progression and growth, microRNAs (miRNA) are generally accepted as key players by now. In our current study we found that microRNA-181a (miR-181a) shows low abundance in SCC compared to normal epidermal skin. In vitro, miRNA downregulation in normal primary keratinocytes induced increased proliferation, while in vivo miR-181a downregulation in HaCaT normal keratinocytes showed tumor-like growth increase up to 50%. Inversely, upregulation of these miRNAs in cancer cells lead to reduced cellular proliferation and induction of apoptosis in vitro. An in vivo therapeutic model with induced miR-181a expression in SCC13 cancer cells reduced tumor formation in mice by 80%. Modulation of miR-181a levels showed an inverse correlation with the proto-oncogene KRAS both on mRNA and protein level by direct interaction. Knockdown of KRAS mimicked the anti-proliferative effects of miR-181a overexpression in patient-derived SCC cells and abolished the enhanced viability of HaCaT cells following miR-181a knockdown. Furthermore, phospho-ERK levels correlated with KRAS levels, suggesting that the observed effects were mediated via the MAPK signaling pathway. miR-181a seemed regulated during keratinocyte differentiation probably in order to amplify the tumor suppressive character of differentiation. Taken together, miR-181a plays a crucial tumor suppressive role in SCC by targeting KRAS and could be a promising candidate for a miRNA based therapy.
Collapse
Affiliation(s)
- Johannes Neu
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| | - Piotr Jan Dziunycz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Martin Falke
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Rémy Denzler
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | |
Collapse
|
16
|
Zhu QG, Zhang SM, Ding XX, He B, Zhang HQ. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies. Oncotarget 2017; 8:57680-57692. [PMID: 28915704 PMCID: PMC5593676 DOI: 10.18632/oncotarget.17016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the most common causes of cancer-related death in the world. The large number of lung cancer cases is non-small cell lung cancer (NSCLC), which approximately accounting for 75% of lung cancer. Over the past years, our comprehensive knowledge about the molecular biology of NSCLC has been rapidly enriching, which has promoted the discovery of driver genes in NSCLC and directed FDA-approved targeted therapies. Of course, the targeted therapies based on driver genes provide a more exact option for advanced non-small cell lung cancer, improving the survival rate of patients. Now, we will review the landscape of driver genes in NSCLC including the characteristics, detection methods, the application of target therapy and challenges.
Collapse
Affiliation(s)
- Qing-Ge Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Shi-Ming Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiao-Xiao Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bing He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hu-Qin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|