1
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
2
|
Farhadi A, Namdari S, Chong PP, Geramizadeh B, Behzad-Behbahani A, Sekawi Z, Sharifzadeh S. Epstein-Barr virus infection is associated with the nuclear factor-kappa B p65 signaling pathway in renal cell carcinoma. BMC Urol 2022; 22:17. [PMID: 35130882 PMCID: PMC8822771 DOI: 10.1186/s12894-022-00964-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There have been few studies regarding viral involvement in the pathogenesis of renal cell carcinoma (RCC). The aim of this study was to examine the possible association of Epstein-Barr virus (EBV) infection with clinicopathological features and cellular biomarkers including p53, p16INK4a, Ki-67 and nuclear factor-kappa B (NF-κB) in RCC tumors. METHODS In this prospective study, 122 histologically confirmed Formalin-fixed Paraffin-embedded RCC tissue specimens along with 96 specimens of their corresponding peritumoral tissues and 23 samples of blunt renal injuries were subjected to nested polymerase chain reaction (nPCR) in order to amplify EBV DNA sequences. The expression of p53, p16INK4a, Ki-67 and NF-κB was investigated by immunohistochemistry (IHC) assay. Statistical analysis was employed to demonstrate the possible associations. RESULTS Infection with EBV was found to be significantly associated with RCC. Our results indicate that p65 NF-κB signaling pathway is probably involved in EBV-mediated RCC pathogenesis. Moreover, we found p53, Ki-67 and cytoplasmic NF-κB expression to be associated with tumor nuclear grade in RCC patients. The expression of p53 and Ki-67 was associated with primary tumor category as well. In addition, p53 overexpression was significantly more frequent among nonconventional RCC tumors than the conventional histologic type. CONCLUSIONS Infection with EBV is likely to play an important role in the development of RCC through the constitutive and permanent activation of NF-κB p65 signaling pathway. However, more experiments and supporting data are required to reach a decisive conclusion.
Collapse
Affiliation(s)
- Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Bita Geramizadeh
- Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E3458. [PMID: 33233657 PMCID: PMC7699726 DOI: 10.3390/cancers12113458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 is a transcription factor that coordinates the antioxidant response in many different tissues, ensuring cytoprotection from endogenous and exogenous stress stimuli. In the kidney, its function is essential in appropriate cellular response to oxidative stress, however its aberrant activation supports progression, metastasis, and resistance to therapies in renal cell carcinoma, similarly to what happens in other nonrenal cancers. While at the moment direct inhibitors of NRF2 are not available, understanding the molecular mechanisms that regulate its hyperactivation in specific tumor types is crucial as it may open new therapeutic perspectives. Here, we focus our attention on renal cell carcinoma, describing how NRF2 hyperactivation can contribute to tumor progression and chemoresistance. Furthermore, we highlight the mechanism whereby the many pathways that are generally altered in these tumors converge to dysregulation of the KEAP1-NRF2 axis.
Collapse
Affiliation(s)
| | - Alessandra Boletta
- IRCCS San Raffaele Scientific Institute, Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, 20132 Milan, Italy;
| |
Collapse
|
4
|
A Study on the Immunohistochemical Expressions of Leptin and Leptin Receptor in Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3682086. [PMID: 32802842 PMCID: PMC7424391 DOI: 10.1155/2020/3682086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Background The mechanisms that link obesity and cancer development are not well-defined. Investigation of leptin and leptin receptor expressions may help define some of the mechanisms. These proteins are known for associating with the immune response, angiogenesis and, signalling pathways such as JAK2/STAT3, PI3K, and AKT pathways. Tissue proteins can be easily detected with immunohistochemistry (IHC), a technique widely used both in diagnostic and research laboratories. The identification of altered levels of leptin and leptin receptor proteins in tumour tissues may lead to targeted treatment for cancer. Objective The objective of this study was to use IHC to compare leptin and leptin receptor expressions in clear cell renal cell carcinomas (ccRCC) in non-obese and obese patients to determine the association between these proteins with the clinicopathological features and prognosis of ccRCC. Patients and Methods. The study involved 60 patients who underwent nephrectomy of which 34 were obese, as assessed using body mass index (BMI). Nephrectomy samples provided tissues of ccRCC and adjacent non-cancerous kidney. The intensity and localization of leptin and leptin receptor protein expressions were evaluated using IHC and correlated with clinicopathological features and clinical outcomes. Aperio ImageScope morphometry and digital pathology were applied to assess the IHC results. The chi-square test was used to determine if there was any significant association between the proteins and the clinicopathological features. The Kaplan-Meier test was used to determine the overall survival, disease-free survival, and recurrence-free survival. A value of p < 0.05 was considered significant. Results There was neither significant difference in the overall cellular and nuclear expressions of leptin and leptin receptor between non-cancerous kidney and ccRCC tissues nor in non-obese and obese individuals with ccRCC. Conclusion In this present study, it was revealed that leptin and leptin receptor were not associated with tumour characteristics and progression of ccRCC patients. Interestingly, nuclear expression of leptin was significantly associated with overall survival. However, the significance of these proteins as biomarkers in other RCC histotypes is still unclear.
Collapse
|
5
|
Pariente-Pérez T, Aguilar-Alonso F, Solano JD, Vargas-Olvera C, Curiel-Muñiz P, Mendoza-Rodríguez CA, Tenorio-Hernández D, Ibarra-Rubio ME. Differential behavior of NF-κB, IκBα and EGFR during the renal carcinogenic process in an experimental model in vivo. Oncol Lett 2020; 19:3153-3164. [PMID: 32256811 PMCID: PMC7074249 DOI: 10.3892/ol.2020.11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of cancer of the adult kidney. It is generally asymptomatic even at advanced stages, so opportune diagnosis is rare, making it almost impossible to study this cancer at its early stages. RCC tumors induced by ferric nitrilotriacetate (FeNTA) in rats histologically correspond to the human clear cell RCC subtype (ccRCC) and the exposure to this carcinogen during either one or two months leads to different early stages of neoplastic development. High levels of nuclear factor kappa B (NF-κB) and epidermal growth factor receptor (EGFR) as well as low levels of NF-κB inhibitor alpha (IκBα) are frequent in human RCC, but their status in FeNTA-induced tumors and their evolution along renal carcinogenesis is unclear. On this basis, in the present study NF-κB, IκBα and EGFR behavior was analyzed at different stages of the experimental renal carcinogenesis model. Similar to patients with RCC, neoplastic tissue showed high levels of p65, one of the predominant subunits of NF-κB in ccRCC and of EGFR (protein and mRNA), as well as a decrease in the levels of NF-κB's main inhibitor, IκBα, resulting in a classic oncogenic combination. Conversely, different responses were observed at early stages of carcinogenesis. After one month of FeNTA-exposure, NF-κB activity and EGFR levels augmented; but unexpectedly, IκBα also did. While after two months, NF-κB activity diminished, but EGFR and IκBα levels remained elevated. In conclusion, FeNTA-induced tumors and RCC human neoplasms are analogues regarding to the classic NF-κB, IκBα and EGFR behavior, and distinctive non-conventional combination of changes is developed at each early stage studied. The results obtained suggest that the dysregulation of the analyzed molecules could be related to different signaling pathways and therefore, to particular effects depending on the phase of the carcinogenic process.
Collapse
Affiliation(s)
- Telma Pariente-Pérez
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Francisco Aguilar-Alonso
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - José Dolores Solano
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Chabetty Vargas-Olvera
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - Patricia Curiel-Muñiz
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | | | - Daniela Tenorio-Hernández
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| | - María Elena Ibarra-Rubio
- Biology Department, Faculty of Chemistry, Laboratory F-225, National Autonomous University of Mexico, CDMX 04510, Mexico
| |
Collapse
|
6
|
Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, Aruni W, Aladresi AAM, Shair OHM, Alharbi SA, Chinnathambi A. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111773. [PMID: 31931385 DOI: 10.1016/j.jphotobiol.2019.111773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
Glioma is the prime cause of cancer allied mortality in adolescent people and it accounts about 80% of all malignant tumours. Eugenol is a major bioactive constituent present in the essential oils with numerous pharmacological benefits including nueroprotective activity. The major drawback of eugenol is its extreme volatile property and oxygen sensitivity therefore we increased the efficacy of drug; eugenol by encapsulating with chitosan polymer. Eugenol loaded chitosan polymer (EuCs) was characterized using FTIR, XRD, SEM, HR-TEM analysis and the encapsulation, drug release efficacy was assessed at in vitro condition. The induction of autophagy and anticancer efficacy of EuCs on glioma cells was evaluated with rat C6 glioma cells using MTT assay, acridine orange staining, immunocytochemical analysis of NFκβ protein expression and FLOW cytometric analysis. The anti-metastatic property of Eu-CS was assessed by immunoblotting and RT-PCR analysis of epithelial mesenchymal transition protein expression in EuCs treated rat C6 glioma cells. Our characterization analysis proves that EuCs possess essential physical and functional properties of copolymer to be utilized as a drug. Further the MTT analysis and AO staining confirms even in the presence of oncogenic inducer and autophagic inhibitors, EuCs exhibits apoptotic potency on rat C6 glioma cells. The result of immunocytochemical studies depicts the inhibition of NFκβ protein expression and flow cytometry studies confirm apoptosis induction by EuCs. The inhibition of metastasis by EuCs was proven by the decrease in epithelial mesenchymal transition protein expression in Eu-Cs treated rat C6 glioma cells. Over all our results authentically confirms eugenol loaded chitosan nanopolymer persuasively induces apoptosis and inhibits metastasis in rat C6 glioma cells.
Collapse
Affiliation(s)
- Zhenjiang Li
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province 475000, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hariprasath Lakshmanan
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Subramanian Kumaran
- Centre for Drug Discovery and Development, Col Dr.Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Wilson Aruni
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Aref Ali Mohammed Aladresi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Integrative analysis reveals CRHBP inhibits renal cell carcinoma progression by regulating inflammation and apoptosis. Cancer Gene Ther 2019; 27:607-618. [PMID: 31570754 PMCID: PMC7445881 DOI: 10.1038/s41417-019-0138-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Patients with renal cell carcinoma (RCC) usually develop drug resistance and have poor prognosis owing to its insensitive property. However, the underlying mechanisms of RCC are still unclear. We implemented an integrative analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets. Three genes (CRHBP, RAB25 and PSAT1) were found to be potential biomarkers in ccRCC and validated by four independent cohorts. Then, ccRCC patients with a decreased expression of CRHBP in tumor tissues had significantly poor survival by TCGA ccRCC datasets and verified by clinical samples as well as RCC cell lines. Overexpression of CRHBP suppressed cell proliferation, migration, invasion as well as apoptosis in vitro and in vivo. Moreover, the results of western blot analysis showed the effects of CRHBP via upregulating NF-κB and p53-mediated mitochondria apoptotic pathway. Our results suggested that CRHBP may be an effective target to treat ccRCC patients.
Collapse
|
8
|
Harrington BS, Annunziata CM. NF-κB Signaling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081182. [PMID: 31443240 PMCID: PMC6721592 DOI: 10.3390/cancers11081182] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
The NF-κB signaling pathway is a master and commander in ovarian cancer (OC) that promotes chemoresistance, cancer stem cell maintenance, metastasis and immune evasion. Many signaling pathways are dysregulated in OC and can activate NF-κB signaling through canonical or non-canonical pathways which have both overlapping and distinct roles in tumor progression. The activation of canonical NF-κB signaling has been well established for anti-apoptotic and immunomodulatory functions in response to the tumor microenvironment and the non-canonical pathway in cancer stem cell maintenance and tumor re-initiation. NF-κB activity in OC cells helps to create an immune-evasive environment and to attract infiltrating immune cells with tumor-promoting phenotypes, which in turn, drive constitutive NF-κB activation in OC cells to promote cell survival and metastasis. For these reasons, NF-κB is an attractive target in OC, but current strategies are limited and broad inhibition of this major signaling pathway in normal physiological and immunological functions may produce unwanted side effects. There are some promising pre-clinical outcomes from developing research to target and inhibit NF-κB only in the tumor-reinitiating cancer cell population of OC and concurrently activate canonical NF-κB signaling in immune cells to promote anti-tumor immunity.
Collapse
|