1
|
Liu H, Wu K, Hu W, Chen X, Tang Y, Ma Y, Chen C, Xie Y, Yu L, Huang J, Shen S, Wang X. Immunophenotypic clustering in paediatric acute myeloid leukaemia. Br J Haematol 2024; 204:2275-2286. [PMID: 38639201 DOI: 10.1111/bjh.19471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, exhibiting diverse subtypes according to the characteristics of tumour cells. The immunophenotype is one of the aspects acquired routinely through flow cytometry in the diagnosis of AML. Here, we characterized the antigen expression in paediatric AML cases across both morphological and molecular genetic subgroups. We discovered a subgroup of patients with unfavourable prognosis that can be immunologically characterized, irrespective of morphological FAB results or genetic aberrations. Cox regression analysis unveiled key antigens influencing the prognosis of AML patients. In terms of underlying genotypes, we observed that the antigenic profiles and outcomes of one specific group, primarily composed of CBFA2T3::GLIS2 and FUS::ERG, were analogous to the reported RAM phenotype. Overall, our data highlight the significance of immunophenotype to tailor treatment for paediatric AML.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Tang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Ma
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changcheng Chen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lisha Yu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Huang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Chen L, Zhong Y, Li YS, Zhuang H, Li X, Liu SP, Li JG, Lin Q, Gao F. A Novel and Rapid Smear Cytomorphology Detection Strategy Based on Upconversion Nanoparticles Immunolabeling Integrated with Wright's Staining for Accurate Diagnosis of Leukemia. Int J Nanomedicine 2023; 18:5213-5224. [PMID: 37724289 PMCID: PMC10505403 DOI: 10.2147/ijn.s414586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
Background Accurate, sensitive, and rapid identification of leukemia cells in blood and bone marrow is of paramount significance for clinical diagnosis. An integrative technique combining traditional cytomorphology with immunophenotyping was proposed to improve the diagnostic efficiency in leukemia. On account of high photostability, biocompatibility, and signal-to-background ratio, upconversion nanoparticles (UCNPs) as luminescent labels have drawn substantial research scrutiny in immunolabeling. Methods To achieve simultaneous determination, NaYF4:Yb,Er UCNPs were coupled with CD38 antibodies to construct immunofluorescence probes that were developed to bind to diffuse large B cell lymphoma (DLBCL) cells, followed by Wright's staining that has been widely used in clinical work for morphological diagnosis. Further, the experimental conditions were optimized, such as medium, slice-making method, antibody dosage, incubation time, etc. Results The cell morphology and immunolabeling could be observed simultaneously, and its simple operation rendered it a possibility for clinical diagnosis. The developed immunolabeling assay could achieve DLBCL cell counting with high reproducibility and stability, and the detection limit was as low as 1.54 cell/slice (>3 σ/s). Moreover, the proposed method also realized real blood and bone marrow sample analysis, and the results were consistent with the clinical diagnosis. Conclusion Overall, this strategy can be carried out after simple laboratory training and has prospective biomedical applications in leukemia classification, diagnosis validation, and differential diagnostics.
Collapse
Affiliation(s)
- Lu Chen
- Department of Paediatrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Yong-Sheng Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - He Zhuang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Xin Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Sheng-Ping Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Jing-Gang Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Qiu Lin
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Fei Gao
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| |
Collapse
|
3
|
Röhnert MA, Kramer M, Schadt J, Ensel P, Thiede C, Krause SW, Bücklein V, Hoffmann J, Jaramillo S, Schlenk RF, Röllig C, Bornhäuser M, McCarthy N, Freeman S, Oelschlägel U, von Bonin M. Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia. Leukemia 2022; 36:2208-2217. [PMID: 35851154 PMCID: PMC9417981 DOI: 10.1038/s41375-022-01647-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response by cytomorphology. In responders, the overall survival was shorter for MRDpos patients (HR 3.8, p = 0.006). Overall survival of MRDneg non-responders was comparable to MRDneg responders. The inter-rater-reliability for MRD detection was high with a Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this strategy may provide the base for multicentric immunophenotypic MRD assessment.
Collapse
Affiliation(s)
- Maximilian A Röhnert
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany.
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Jonas Schadt
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Philipp Ensel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- AgenDix GmbH, Dresden, Germany
| | - Stefan W Krause
- Department of Medicine 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Jörg Hoffmann
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Giessen and Marburg, Marburg, Germany
| | - Sonia Jaramillo
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard F Schlenk
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- National Center of Tumor Diseases, Dresden, Germany
| | - Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Uta Oelschlägel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Piñero P, Morillas M, Gutierrez N, Barragán E, Such E, Breña J, García-Hernández MC, Gil C, Botella C, González-Navajas JM, Zapater P, Montesinos P, Sempere A, Tarín F. Identification of Leukemia-Associated Immunophenotypes by Databaseguided Flow Cytometry Provides a Highly Sensitive and Reproducible Strategy for the Study of Measurable Residual Disease in Acute Myeloblastic Leukemia. Cancers (Basel) 2022; 14:cancers14164010. [PMID: 36011002 PMCID: PMC9406948 DOI: 10.3390/cancers14164010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The complete immunophenotypic characterization of acute myeloid leukemia is essential for an accurate diagnosis and follow-up, which is determinant in the course of the disease. In many cases, the only option for the evaluation of minimal residual disease is flow cytometry, so the aim of this study is to develop an automatized multidimensional strategy to identify and characterize LAIPs as well as to detect new emerging aberrances in AML patients during the follow-up. The integrated DFN/LAIP strategy that we propose allows the identification of the most useful markers for minimal residual disease monitoring, improving the sensitivity and specificity of these studies. Furthermore, the use of databases and the automation of the analysis provide the basis for the generation of objective conclusions in minimal residual disease evaluations. Abstract Background: Multiparametric Flow Cytometry (MFC) is an essential tool to study the involved cell lineages, the aberrant differentiation/maturation patterns and the expression of aberrant antigens in acute myeloid leukemia (AML). The characterization of leukemia-associated immunophenotypes (LAIPs) at the moment of diagnosis is critical to establish reproducible strategies for the study of measurable residual disease using MFC (MFC-MRD). Methods: In this study, we identify and characterize LAIPs by comparing the leukemic populations of 145 AML patients, using the EuroFlow AML/ MDS MFC panel, with six databases of normal myeloid progenitors (MPCs). Principal component analysis was used to identify and characterize the LAIPs, which were then used to generate individual profiles for MFC-MRD monitoring. Furthermore, we investigated the relationship between the expression patterns of LAIPs and the different subtypes of AML. The MFC-MRD study was performed by identifying residual AML populations that matched with the LAIPs at diagnosis. To further validate this approach, the presence of MRD was also assessed by qPCR (qPCR-MRD). Finally, we studied the association between MFC-MRD and progression-free survival (PFS). Results: The strategy used in this study allowed us to describe more than 300 different LAIPs and facilitated the association of specific phenotypes with certain subtypes of AML. The MFC-MRD monitoring based on LAIPs with good/strong specificity was applicable to virtually all patients and showed a good correlation with qPCR-MRD and PFS. Conclusions: The described methodology provides an objective method to identify and characterize LAIPs. Furthermore, it provides a theoretical basis to develop highly sensitive MFC-MRD strategies.
Collapse
Affiliation(s)
- Paula Piñero
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Correspondence:
| | - Marina Morillas
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Natalia Gutierrez
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Eva Barragán
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Esperanza Such
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Joaquin Breña
- Hematology Department, La Candelaria General University Hospital, 38010 Santa Cruz de Tenerife, Spain
| | | | - Cristina Gil
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Carmen Botella
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | | | - Pedro Zapater
- Pharmacology Department, Dr. Balmis General University Hospital, Miguel Hernández University, 03202 Elche, Spain
| | - Pau Montesinos
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Amparo Sempere
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Fabian Tarín
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| |
Collapse
|
5
|
Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, Tettero JM, Bachas C, Baer C, Béné MC, Bücklein V, Czyz A, Denys B, Dillon R, Feuring-Buske M, Guzman ML, Haferlach T, Han L, Herzig JK, Jorgensen JL, Kern W, Konopleva MY, Lacombe F, Libura M, Majchrzak A, Maurillo L, Ofran Y, Philippe J, Plesa A, Preudhomme C, Ravandi F, Roumier C, Subklewe M, Thol F, van de Loosdrecht AA, van der Reijden BA, Venditti A, Wierzbowska A, Valk PJM, Wood BL, Walter RB, Thiede C, Döhner K, Roboz GJ, Cloos J. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2021; 138:2753-2767. [PMID: 34724563 PMCID: PMC8718623 DOI: 10.1182/blood.2021013626] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancy, Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jesse M Tettero
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Marie-Christine Béné
- Department of Hematology and Biology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Veit Bücklein
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Anna Czyz
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Barbara Denys
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| | | | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY
| | | | | | - Julia K Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | | | | | - Francis Lacombe
- Hematology Biology, Flow Cytometry, Bordeaux University Hospital, Pessac, France
| | | | - Agata Majchrzak
- Department of Experimental Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Luca Maurillo
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Yishai Ofran
- Department of Hematology, Shaare Zedek Medical Center Faculty of Medicine Hebrew University, Jerusalem Israel
| | - Jan Philippe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University
| | - Adriana Plesa
- Department of Hematology Laboratory, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | | | | | | | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | | | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Brent L Wood
- Department of Hematopathology, Children's Hospital Los Angeles, CA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; and
- AgenDix GmbH, Dresden, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Hanekamp D, Tettero JM, Ossenkoppele GJ, Kelder A, Cloos J, Schuurhuis GJ. AML/Normal Progenitor Balance Instead of Total Tumor Load (MRD) Accounts for Prognostic Impact of Flowcytometric Residual Disease in AML. Cancers (Basel) 2021; 13:2597. [PMID: 34073205 PMCID: PMC8198261 DOI: 10.3390/cancers13112597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an important prognostic factor. Progenitors are key populations in defining MRD, and cases of MRD involving these progenitors are calculated as percentage of WBC and referred to as white blood cell MRD (WBC-MRD). Two main compartments of WBC-MRD can be defined: (1) the AML part of the total primitive/progenitor (CD34+, CD117+, CD133+) compartment (referred to as primitive marker MRD; PM-MRD) and (2) the total progenitor compartment (% of WBC, referred to as PM%), which is the main quantitative determinant of WBC-MRD. Both are related as follows: WBC-MRD = PM-MRD × PM%. We explored the relative contribution of each parameter to the prognostic impact. In the HOVON/SAKK study H102 (300 patients), based on two objectively assessed cut-off points (2.34% and 10%), PM-MRD was found to offer an independent prognostic parameter that was able to identify three patient groups with different prognoses with larger discriminative power than WBC-MRD. In line with this, the PM% parameter itself showed no prognostic impact, implying that the prognostic impact of WBC-MRD results from the PM-MRD parameter it contains. Moreover, the presence of the PM% parameter in WBC-MRD may cause WBC-MRD false positivity and WBC-MRD false negativity. For the latter, at present, it is clinically relevant that PM-MRD ≥ 10% identifies a patient sub-group with a poor prognosis that is currently classified as good prognosis MRDnegative using the European LeukemiaNet 0.1% consensus MRD cut-off value. These observations suggest that residual disease analysis using PM-MRD should be conducted.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
- Department of Hematology, Erasmus MC, NL-3000 CA Rotterdam, The Netherlands
| | - Jesse M. Tettero
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Angèle Kelder
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gerrit Jan Schuurhuis
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| |
Collapse
|
7
|
Camburn AE, Petrasich M, Ruskova A, Chan G. Re: Myeloblasts in normal bone marrows expressing leukaemia-associated immunophenotypes: author reply. Pathology 2020; 52:291. [PMID: 31928759 DOI: 10.1016/j.pathol.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Anna Ruskova
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - George Chan
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
8
|
Re: Myeloblasts in normal bone marrows expressing leukaemia-associated immunophenotypes. Pathology 2019; 52:289-291. [PMID: 31883670 DOI: 10.1016/j.pathol.2019.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
|