1
|
Shiina T, Suzuki Y, Horii K, Sawamura T, Yuki N, Horii Y, Shimizu Y. Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats. J Physiol Sci 2025; 74:26. [PMID: 39843018 PMCID: PMC11036717 DOI: 10.1186/s12576-024-00916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 μM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 μM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 μM), and a P2Y receptor antagonist, cibacron blue F3GA (200 μM), inhibited the ATP (100 μM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 μM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 μM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 μM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.
Collapse
Affiliation(s)
- Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan.
| | - Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Kazuhiro Horii
- Division of Biological Principles, Department of Physiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Tomoya Sawamura
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Natsufu Yuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Yuuki Horii
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan
| |
Collapse
|
2
|
Horii K, Suzuki Y, Shiina T, Saito S, Onouchi S, Horii Y, Shimaoka H, Shimizu Y. ATP-dependent potassium channels contribute to motor regulation of esophageal striated muscle in rats. J Vet Med Sci 2019; 81:1266-1272. [PMID: 31292350 PMCID: PMC6785617 DOI: 10.1292/jvms.19-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to clarify roles of ATP-dependent potassium channels (KATP channels) in motility of the striated muscle portion in the esophagus. An isolated segment of the rat esophagus was placed in an organ bath and mechanical responses were recorded using a force transducer. Electrical stimulation of the vagus nerve evoked contractile response of striated muscle in the esophageal segment. Application of glibenclamide, an antagonist of KATP channels, increased amplitude of vagally mediated twitch contractions of the rat esophagus. On the other hand, minoxidil, an agonist of KATP channels, decreased amplitude of twitch contractions. RT-PCR revealed the expression of subunits of KATP channels in esophageal tissue. In addition, immunopositivity for subunits of KATP channels was observed in the striated muscle cells of the esophageal muscle layer. These findings indicate that KATP channels contribute to motor regulation of striated muscle in the rat esophagus.
Collapse
Affiliation(s)
- Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Shouichiro Saito
- Department of Basic Veterinary Science, Laboratory of Anatomy, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Department of Basic Veterinary Science, Laboratory of Anatomy, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Hiroki Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| |
Collapse
|