1
|
Ledezma C, Coria-Lucero C, Castro A, Leporatti J, Perez M, Delgado S, Anzulovich AC, Navigatore-Fonzo L. Day-night oscillations of cognitive functions, TNF alpha and clock -related factors expression are modified by an intracerebroventricular injection of amyloid beta peptide in rat. Neurochem Int 2022; 154:105277. [PMID: 35007657 DOI: 10.1016/j.neuint.2022.105277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by a gradual impairment in cognitive functions. Recent research have shown that TNF-α is a proinflammatory cytokine implicated in the pathogenesis of neurodegenerative diseases, such as AD. Besides cognitive deficit, AD patients show alterations in their circadian rhythms. The objective of this work was to investigate the effects of an intracerebroventricular injection of Aß aggregates on temporal patterns of cognitive functions and on daily rhythms of Aβ, TNFα, BMAL1 and RORα protein levels in the rat prefrontal cortex. Four-month-old males Holtzman rats were used in this study. Groups were defined as: control and Aβ-injected rats. Rats were maintained under 12h-light:12h-dark throughout the entire experimental period. Prefrontal cortex samples were isolated every 4 h during a 24h period. Our results demonstrated that an intracerebroventricular injection of Aß aggregates impaired learning and memory in rats at ZT 2 and ZT 14 and modified daily patterns of Aβ, TNFα, and clock-related factors in the rat prefrontal cortex. Our findings showed that the increase of Aß altered temporal patterns of TNFα, and, consequently, induced alterations in daily rhythms of clock-related factors, affecting the cognitive performance of animals with Alzheimer's.
Collapse
Affiliation(s)
- Carina Ledezma
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Cinthia Coria-Lucero
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Andrea Castro
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Jorge Leporatti
- Faculty of Economic, Legal and Social Sciences, National University of San Luis (UNSL), Campus Universitario: Ruta Prov. Nº 55 (Ex. 148) Extremo Norte, Argentina
| | - Mariela Perez
- Institute of Experimental Pharmacology of Cordoba (CONICET), 5700HHW, San Luis, Argentina
| | - Silvia Delgado
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena Navigatore-Fonzo
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
2
|
Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacol Res 2021; 175:106018. [PMID: 34863823 DOI: 10.1016/j.phrs.2021.106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/Nrf2) is a pivotal facilitator of cytoprotective responses against the oxidative/electrophilic insults. Upon activation, Nrf2 induces transcription of a wide range of cytoprotective genes having antioxidant response element (ARE) in their promoter region. Dysfunction in Nrf2 signaling has been linked to the pathogenesis of AD and several studies have suggested that boosting Nrf2 expression/activity by genetic or pharmacological approaches is beneficial in AD. Among the diverse mechanisms that regulate the Nrf2 signaling, miRNAs-mediated regulation of Nrf2 has gained much attention in recent years. Several miRNAs have been reported to directly repress the post-transcriptional expression of Nrf2 and thereby negatively regulate the Nrf2-dependent cellular cytoprotective response in AD. Moreover, several Nrf2 targeting miRNAs are misregulated in AD brains. This review is focused on the role of misregulated miRNAs that directly target Nrf2, in AD pathophysiology. Here, alongside a general description of functional interactions between miRNAs and Nrf2, we have reviewed the evidence indicating the possible role of these miRNAs in AD pathogenesis.
Collapse
|
3
|
Radaghdam S, Karamad V, Nourazarian A, Shademan B, Khaki-Khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer's disease. Neurosci Lett 2021; 764:136221. [PMID: 34500000 DOI: 10.1016/j.neulet.2021.136221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a form of brain disorder characterized by various pathological changes in the brain. Numerous studies have shown that sex hormones are involved in the disease. For instance, progesterone, estrogen, and testosterone are well-known steroid sex hormones that play an essential role in AD pathogenesis. The Gender-dependency of AD is attributed to the effect of these hormones on the brain, which plays a neuroprotective role. In recent years, much research has been performed on the protective role of these hormones against nerve cell damage, which are promising for AD management. Hence, in the current review, we aim to decipher the protective role of steroid hormones in AD. Accordingly, we will discuss their functional mechanisms at the genomic and non-genomic scales.
Collapse
Affiliation(s)
- Saeed Radaghdam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zhou LC, Liang YF, Huang Y, Yang GX, Zheng LL, Sun JM, Li Y, Zhu FL, Qian HW, Wang R, Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 219:113426. [PMID: 33848787 DOI: 10.1016/j.ejmech.2021.113426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) has become a major obstacle in its treatment. An effective approach is to develop multifunctional agents that simultaneously target multiple pathological processes. Here, a series of diosgenin-indole compounds were designed, synthesized and evaluated for their neuroprotective effects against H2O2 (hydrogen peroxide), 6-OHDA (6-hydroxydopamine) and Aβ (beta amyloid) damages. Preliminary structure-activities relationship revealed that the introduction of indole fragment and electron-donating group at C-5 on ring indole could be beneficial for neuroprotective activities. Results indicated that compound 5b was the most promising candidate against cellular damage induced by H2O2 (52.9 ± 1.9%), 6-OHDA (38.4 ± 2.4%) and Aβ1-42 (54.4 ± 2.7%). Molecular docking study suggested the affinity for 5b bound to Aβ1-42 was -40.59 kcal/mol, which revealed the strong binding affinity of 5b to Aβ1-42. The predicted values of brain/blood partition coefficient (-0.733) and polar surface area (85.118 Å2) indicated the favorable abilities of BBB permeation and absorption of 5b. In addition, 5b significantly decreased ROS (reactive oxygen species) production induced by H2O2. In the following in vivo experiment, 5b obviously attenuated memory and learning impairments of Aβ-injected mice. In summary, compound 5b could be considered as a promising dual-functional neuroprotective agent against AD.
Collapse
Affiliation(s)
- Li-Cheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying-Fan Liang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Li Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He-Wen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Navigatore Fonzo L, Alfaro M, Mazaferro P, Golini R, Jorge L, Cecilia Della Vedova M, Ramirez D, Delsouc B, Casais M, Anzulovich AC. An intracerebroventricular injection of amyloid-beta peptide (1-42) aggregates modifies daily temporal organization of clock factors expression, protein carbonyls and antioxidant enzymes in the rat hippocampus. Brain Res 2021; 1767:147449. [PMID: 33771518 DOI: 10.1016/j.brainres.2021.147449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer disease (AD) is the most frequent form of dementia in the elderly. It is characterized by the deterioration of memory and learning. The histopathological hallmarks of AD include the presence of extracellular deposits of amyloid beta peptide, intracellular neurofibrillary tangles, neuron and synapse loss, in the brain, including the hippocampus. Accumulation of Aβ peptide causes an increase in intracellular reactive oxygen species (ROS) and free radicals associated to a deficient antioxidant defense system. Besides oxidative stress and cognitive deficit, AD patients show alterations in their circadian rhythms. The objective of this work was to investigate the effects of an intracerebroventricular injection of amyloid beta peptide Aβ(1-42) aggregates on temporal patterns of protein oxidation, antioxidant enzymes and clock factors in the rat hippocampus. Four-month-old male Holtzman rats divided into the groups control (CO) and Aβ-injected (Aβ), were maintained under 12 h-light12h-dark conditions and received water and food ad-libitum. Hippocampus samples were isolated every 6 h during a 24 h period. Our results showed daily patterns of protein carbonyls, catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as Rorα and Rev-erbß mRNA, in the rat hippocampus. Interestingly, an intracerebroventricular injection of Aβ aggregates modified daily oscillation of protein carbonyls levels, phase-shifted daily rhythms of clock genes and had a differential effect on the daily expression and activity of CAT and GPx. Thus, Aβ aggregates might affect clock-mediated transcriptional regulation of antioxidant enzymes, by affecting the formation of BMAL1:CLOCK heterodimer, probably, as a consequence of the alteration of the redox state observed in rats injected with Aβ.
Collapse
Affiliation(s)
| | - Mauro Alfaro
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Paula Mazaferro
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Rebeca Golini
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Leporatti Jorge
- Faculty of Economic, Legal and Social Sciences, National University of San Luis (UNSL), Campus Universitario, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, D5700HHW San Luis, Argentina
| | - Maria Cecilia Della Vedova
- Institute of Chemistry-San Luis,(INQUISAL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Darío Ramirez
- Laboratory of Experimental & Translational Medicine, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Belén Delsouc
- Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Res-earch-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Marilina Casais
- Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Res-earch-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina.
| |
Collapse
|