1
|
Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, Dehpour AR. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 2018; 78:142-148. [PMID: 29195160 DOI: 10.1016/j.yebeh.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor NG-nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway.
Collapse
Affiliation(s)
- Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Riazi
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, University of Calgary, Canada
| | - Ali Reza Noorian
- Stroke Program, Kaiser Permanente Orange County, Irvine, CA, United States
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nakhjiri E, Saboory E, Roshan-Milani S, Rasmi Y, Sayyadi H. Prenatal Stress+Morphine and Postnatal Re-exposure to Stress Alter Pentylenetetrazol-Induced Epileptic Manifestations in Rats. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Hiroyama S, Horiuchi M, Abe K, Itoh T. Involvement of dopaminergic system in stress-induced anticonvulsant effect in juvenile mice. Brain Res 2012; 1473:104-13. [DOI: 10.1016/j.brainres.2012.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/08/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
4
|
Sadaghiani MM, Saboory E. Prenatal stress potentiates pilocarpine-induced epileptic behaviors in infant rats both time and sex dependently. Epilepsy Behav 2010; 18:166-70. [PMID: 20483668 DOI: 10.1016/j.yebeh.2010.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Stressful events during gestation have important effects on the later physical and mental health of the offspring. In the study described here, the pilocarpine-induced seizure model was used to test the hypothesis that prenatal stress affects seizure susceptibility in infant rats. Prenatal stress consisted of daily restraint of the dam under normal room conditions (for 120minutes, twice daily) during the first, second, and third weeks of gestation. The pups were then compared with pups born to unstressed dams. Both second- and third-week-gestation stress significantly reduced pilocarpine-induced seizures in 19-day-old rat offspring, as compared with nonstressed control offspring. Mid- and late-gestation stress increased the rate and time of tonic-clonic seizures. Mortality rate 2 and 24hours after pilocarpine administration increased significantly in all stressed rats. Stress induced a significant rise in circulating corticosterone levels (2- to 8-fold, P<0.001) in the offspring. Female offspring differed little from male offspring with respect to blood corticosterone levels and epileptic behaviors. These findings indicate that prenatal stress, particularly during the second and third weeks of pregnancy, may play an important role in increasing seizure vulnerability in the unborn offspring. Female rats are more resistant to stress than males probably because of the lower susceptibility of their hypothalamic-pituitary-adrenal axis.
Collapse
|
5
|
Fournier N, Galic M, Kalynchuk L, Persinger M. Profound hypothermia determines the anticonvulsant and neuroprotective effects of swim stress. Brain Res 2008; 1240:153-64. [DOI: 10.1016/j.brainres.2008.08.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/15/2008] [Accepted: 08/21/2008] [Indexed: 01/22/2023]
|
6
|
Peričić D, Štrac DŠ, Vlainić J. Interaction of diazepam and swim stress. Brain Res 2007; 1184:81-7. [DOI: 10.1016/j.brainres.2007.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
7
|
Pericić D, Svob Strac D. The role of 5-HT7 receptors in the control of seizures. Brain Res 2007; 1141:48-55. [PMID: 17276417 DOI: 10.1016/j.brainres.2007.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/22/2006] [Accepted: 01/05/2007] [Indexed: 11/20/2022]
Abstract
Serotonin exerts its effects via at least 14 different receptor subtypes, but the role of only a few of them has been studied in relation to the control of seizures. A negative role of 5-HT(7) receptors has recently been proposed. To evaluate further in unstressed and stressed animals the possible role of this receptor subtype in the control of brain excitability, we treated mice with antagonists and agonists of these receptors prior to exposure to swim stress and the intravenous infusion of picrotoxin, a non-competitive GABA(A) receptor antagonist. In accordance with the previous studies, swim stress increased the doses of picrotoxin producing two convulsant signs (running/bouncing clonus, tonic hindlimb extension) and death, i.e., swim stress increased the seizure threshold for picrotoxin. SB-269970 (10-30 mg/kg ip), a selective antagonist of 5-HT(7) receptors, and ritanserin (1 mg/kg ip), a nonselective 5-HT (2/7) antagonist, failed to affect, while 5-carboxamidotryptamine (5-CT), a potent 5-HT (1/7) receptor agonist, increased in unstressed and swim-stressed mice the doses of picrotoxin producing convulsions and death. The anticonvulsant effect obtained with 5-CT 0.5 mg/kg was not greater than that obtained with 0.1 mg/kg. The 5-CT (0.1 mg/kg ip)-induced increase of the seizure threshold for picrotoxin in stressed mice was abolished with SB-269970 (10 mg/kg), but not with WAY-100635 (0.3 mg/kg), a selective antagonist of 5-HT(1A) receptors, suggesting that the anticonvulsant effect of 5-CT against convulsions produced by picrotoxin was achieved via 5-HT(7) receptors. The results suggest a positive role of 5-HT(7) receptors in the control of seizures.
Collapse
Affiliation(s)
- Danka Pericić
- Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, Ruder Bosković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | | |
Collapse
|
8
|
Pericić D, Strac DS, Vlainić J. Zimelidine decreases seizure susceptibility in stressed mice. J Neural Transm (Vienna) 2006; 113:1863-71. [PMID: 16736239 DOI: 10.1007/s00702-006-0489-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 02/18/2006] [Indexed: 10/24/2022]
Abstract
To further evaluate whether selective serotonin reuptake inhibitors (SSRIs) have pro- or anticonvulsant properties and whether these properties will be modified by stress, we studied the effect of zimelidine on the convulsions produced by picrotoxin, a GABA(A) receptor antagonist, in unstressed and swim stressed mice. Zimelidine potentiated the ability of swim stress to enhance the threshold doses of intravenously administered picrotoxin producing convulsant signs and death, without having an effect in unstressed mice. The anticonvulsant effect of zimelidine was counteracted with mianserin, the antagonist of 5-HT(2A/2C), and diminished with WAY-100635, a selective antagonist of 5-HT(1A) receptors. In stressed mice, WAY-100635 prevented the anticonvulsant effect of 8-OH-DPAT, a 5-HT(1A) receptor agonist. SB-269970 and ketanserin, the antagonists of 5-HT(7) and 5-HT(2A) receptors, respectively, failed to reduce the effect of zimelidine. The results suggest the involvement of 5-HT(2C) and 5-HT(1A) receptors in the anticonvulsant effects of zimelidine and possibly other SSRIs in stress.
Collapse
Affiliation(s)
- D Pericić
- Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, Ruder Bosković Institute, Zagreb, Croatia.
| | | | | |
Collapse
|
9
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
10
|
Chadda R, Devaud LL. Differential effects of mild repeated restraint stress on behaviors and GABA(A) receptors in male and female rats. Pharmacol Biochem Behav 2005; 81:854-63. [PMID: 16039700 DOI: 10.1016/j.pbb.2005.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/06/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022]
Abstract
We previously reported that the very mild stress of individual housing influenced seizure risk and gamma-amino butyric acid (GABA(A)) receptor activity differentially between male and female rats. The aim of the present set of studies was to assess sex differences in behavioral responses to a more pronounced type of stressor, repeated restraint stress. We also wanted to determine the role of GABA(A) receptors in effects of this stressor. Our data suggest that repeated restraint stress afforded short-term protection against seizure induction in both male and female rats. Moreover, this protection was more persistent in female than male rats. This stress paradigm also elicited a reduction in general activity in male rats, whereas female rats displayed prolonged increased activity following the repeated restraint stress exposure. However, there were limited effects on anxiety-like behaviors, as determined by time spent in the open arms on the elevated plus maze. Sex differences in stress-induced increases in plasma corticosterone levels were observed, which generally correlated with sex differences in behavioral measures. There were no significant effects of the repeated restraint stress exposure on benzodiazepine/GABA(A) receptor density or affinity nor on receptor function. Taken together, these findings provide additional evidence to support the important influences of sex in responding to stress and highlight the need to consider this context when addressing the role of stress in health issues for women and men.
Collapse
Affiliation(s)
- Ritu Chadda
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209-8334, United States
| | | |
Collapse
|
11
|
Pericić D, Lazić J, Jazvinsćak Jembrek M, Svob Strac D. Stimulation of 5-HT 1A receptors increases the seizure threshold for picrotoxin in mice. Eur J Pharmacol 2005; 527:105-10. [PMID: 16313900 DOI: 10.1016/j.ejphar.2005.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 10/06/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
To evaluate the possible role of 5-HT 1A and 5-HT 2A receptors in the anticonvulsant effect of swim stress, mice were pre-treated with agonists and antagonists of these receptors prior to exposure to stress and the intravenous infusion of picrotoxin. 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propylamino) tetralin) and WAY-100635 (a selective agonist and antagonist of 5-HT 1A receptors), DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) and ketanserin (a 5-HT 2A/2C receptor agonist and antagonist) were used. Results demonstrated that 1 and 3 mg/kg of 8-OH-DPAT increased the doses of picrotoxin producing running/bouncing clonus, tonic hindlimb extension and death in stressed and unstressed mice, respectively. Pre-treatment with WAY (0.3 mg/kg) prevented the effect of 8-OH-DPAT (3 mg/kg). DOI (2.5 mg/kg) and ketanserin (1 mg/kg) failed to affect the seizure threshold for picrotoxin. The results show that stimulation of 5-HT 1A receptors exerts anticonvulsant actions in stressed and unstressed mice, while stimulation of 5-HT 2A/2C receptors does not interfere with the effect of stress on picrotoxin-induced convulsions.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O.B. 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|