1
|
Liu WY, Liu H, Aggarwal J, Huang ZL, Horner RL. Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo. Sleep 2021; 43:5813557. [PMID: 32227104 PMCID: PMC7487885 DOI: 10.1093/sleep/zsaa053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p < 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.
Collapse
Affiliation(s)
- Wen-Ying Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmacology, Institute of Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hattie Liu
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jasmin Aggarwal
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmacology, Institute of Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Richard L Horner
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Muscle fatigue: general understanding and treatment. Exp Mol Med 2017; 49:e384. [PMID: 28983090 PMCID: PMC5668469 DOI: 10.1038/emm.2017.194] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments.
Collapse
|
3
|
Dougherty JP, Wolff BS, Cullen MJ, Saligan LN, Gershengorn MC. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue. Pharmacol Res 2017; 124:1-8. [PMID: 28720519 DOI: 10.1016/j.phrs.2017.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 02/08/2023]
Abstract
Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans.
Collapse
Affiliation(s)
- John P Dougherty
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Brian S Wolff
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Mary J Cullen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA,.
| | - Marvin C Gershengorn
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Wozniak DR, Quinnell TG. Unmet needs of patients with narcolepsy: perspectives on emerging treatment options. Nat Sci Sleep 2015; 7:51-61. [PMID: 26045680 PMCID: PMC4447169 DOI: 10.2147/nss.s56077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The treatment options currently available for narcolepsy are often unsatisfactory due to suboptimal efficacy, troublesome side effects, development of drug tolerance, and inconvenience. Our understanding of the neurobiology of narcolepsy has greatly improved over the last decade. This knowledge has not yet translated into additional therapeutic options for patients, but progress is being made. Some compounds, such as histaminergic H3 receptor antagonists, may prove useful in symptom control of narcolepsy. The prospect of finding a cure still seems distant, but hypocretin replacement therapy offers some promise. In this narrative review, we describe these developments and others which may yield more effective narcolepsy treatments in the future.
Collapse
Affiliation(s)
- Dariusz R Wozniak
- Respiratory Support and Sleep Centre, Papworth Hospital, Cambridge, UK
| | | |
Collapse
|
5
|
Puissant MM, Echert AE, Yang C, Mouradian GC, Novotny T, Liu P, Liang M, Hodges MR. RNASeq-derived transcriptome comparisons reveal neuromodulatory deficiency in the CO₂ insensitive brown Norway rat. J Physiol 2014; 593:415-30. [PMID: 25630262 DOI: 10.1113/jphysiol.2014.285171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 11/08/2022] Open
Abstract
Raphé-derived serotonin (5-HT) and thyrotropin-releasing hormone (TRH) play important roles in fundamental, homeostatic control systems such as breathing and specifically the ventilatory CO2 chemoreflex. Brown Norway (BN) rats exhibit an inherent and severe ventilatory insensitivity to hypercapnia but also exhibit relatively normal ventilation at rest and during other conditions, similar to multiple genetic models of 5-HT system dysfunction in mice. Herein, we tested the hypothesis that the ventilatory insensitivity to hypercapnia in BN rats is due to altered raphé gene expression and the consequent deficiencies in raphé-derived neuromodulators such as TRH. Medullary raphé transcriptome comparisons revealed lower expression of multiple 5-HT neuron-specific genes in BN compared to control Dahl salt-sensitive rats, predictive of reduced central nervous system monoamines by bioinformatics analyses and confirmed by high-performance liquid chromatography measurements. In particular, raphé Trh mRNA and peptide levels were significantly reduced in BN rats, and injections of the stable TRH analogue Taltirelin (TAL) stimulated breathing dose-dependently, with greater effects in BN versus control Sprague-Dawley rats. Importantly, TAL also effectively normalized the ventilatory CO2 chemoreflex in BN rats, but TAL did not affect CO2 sensitivity in control Sprague-Dawley rats. These data establish a molecular basis of the neuromodulatory deficiency in BN rats, and further suggest an important functional role for TRH signalling in the mammalian CO2 chemoreflex.
Collapse
Affiliation(s)
- Madeleine M Puissant
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Thirunarayanan N, Raaka BM, Gershengorn MC. Taltirelin is a superagonist at the human thyrotropin-releasing hormone receptor. Front Endocrinol (Lausanne) 2012; 3:120. [PMID: 23087672 PMCID: PMC3466466 DOI: 10.3389/fendo.2012.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022] Open
Abstract
Taltirelin (TAL) is a thyrotropin-releasing hormone (TRH) analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R) in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R. We suggest the superagonism exhibited by TAL may in part explain its higher activity in mediating central nervous system effects in humans compared to TRH.
Collapse
Affiliation(s)
| | | | - Marvin C. Gershengorn
- *Correspondence: Marvin C. Gershengorn, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Room 4134, Bethesda, MD 20892, USA. e-mail:
| |
Collapse
|
7
|
Asai H, Watanabe Y, Yamauchi-Kohno R, Doi O. Reversal of hemorrhagic shock in rats using the metabolically stable thyrotropin-releasing hormone analog taltirelin hydrate. J Recept Signal Transduct Res 2011; 31:416-22. [DOI: 10.3109/10799893.2011.625427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Eto K, Kim SK, Nabekura J, Ishibashi H. Taltirelin, a thyrotropin-releasing hormone analog, alleviates mechanical allodynia through activation of descending monoaminergic neurons in persistent inflammatory pain. Brain Res 2011; 1414:50-7. [PMID: 21872219 DOI: 10.1016/j.brainres.2011.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/23/2011] [Accepted: 07/30/2011] [Indexed: 02/08/2023]
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs have been reported to modulate descending monoaminergic inhibitory neurons, resulting in antinociception. However, it remains unknown whether TRH exerts an antiallodynic effect during persistent pain. Here, we investigated the action of taltirelin, a stable TRH analog, on mechanical allodynia in mice with inflammatory persistent pain induced by an injection of complete Freund's adjuvant into the hindpaw. Systemic administration of 1.0 mg/kg taltirelin markedly reduced mechanical allodynia. This effect was abolished by the 6-hydroxydopamine (6-OHDA)-induced depletion of central noradrenaline. While intraperitoneal injection of the α₁-adrenoceptor antagonist prazosin had no effect, intraperitoneal and intrathecal administration of the α₂-adrenoceptor antagonist yohimbine prevented the antiallodynic action of taltirelin. In addition, DL-p-chlorophenylalanine (PCPA)-induced depletion of serotonin (5-HT) and intraperitoneal and intrathecal injection of the 5-HT(1A) receptor antagonist WAY-100635 blocked the effect of taltirelin on allodynia. These findings suggest that taltirelin alleviates mechanical allodynia in inflammatory persistent pain by modulating the descending noradrenergic and serotonergic neuronal pathways via indirect activation of spinal α₂-adrenergic and 5-HT(1A) receptors.
Collapse
Affiliation(s)
- Kei Eto
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|