1
|
Martínez-Magaña CJ, Muñoz-Castillo PA, Murbartián J. Spinal bestrophin-1 and anoctamin-1 channels have a pronociceptive role in the tactile allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1834:148915. [PMID: 38582414 DOI: 10.1016/j.brainres.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.
Collapse
Affiliation(s)
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede sur, Mexico City, Mexico.
| |
Collapse
|
2
|
Kourbanova K, Alexandre C, Latremoliere A. Effect of sleep loss on pain-New conceptual and mechanistic avenues. Front Neurosci 2022; 16:1009902. [PMID: 36605555 PMCID: PMC9807925 DOI: 10.3389/fnins.2022.1009902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Sleep disturbances increase pain sensitivity in clinical and preclinical settings, but the precise mechanisms are unknown. This represents a major public health issue because of the growing sleep deficiency epidemic fueled by modern lifestyle. To understand the neural pathways at the intersection between sleep and pain processes, it is critical to determine the precise nature of the sleep disruptions that increase pain and the specific component of the pain response that is targeted. Methods We performed a review of the literature about sleep disturbances and pain sensitivity in humans and rodents by taking into consideration the targeted sleep stage (REMS, non-NREMS, or both), the amount of sleep lost, and the different types of sleep disruptions (partial or total sleep loss, duration, sleep fragmentation or interruptions), and how these differences might affect distinct components of the pain response. Results We find that the effects of sleep disturbances on pain are highly conserved among species. The major driver for pain hypersensitivity appears to be the total amount of sleep lost, while REMS loss by itself does not seem to have a direct effect on pain sensitivity. Sleep loss caused by extended wakefulness preferentially increases pain perception, whereas interrupted and limited sleep strongly dysregulates descending controls such as DNIC, especially in women. Discussion We discuss the possible mechanisms involved, including an increase in inflammatory processes, a loss of nociceptive inhibitory pathways, and a defect in the cognitive processing of noxious input.
Collapse
Affiliation(s)
- Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Hu S, Gilron I, Singh M, Bhatia A. A Scoping Review of the Diurnal Variation in the Intensity of Neuropathic Pain. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:991-1005. [PMID: 34850188 DOI: 10.1093/pm/pnab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Recent studies have suggested that neuropathic pain exhibits a daily diurnal pattern, with peak levels usually occurring in the late afternoon to evening and the trough in the morning hours, although literature on this topic has been sparse. This scoping review examines current evidence on the chronobiology of neuropathic pain both in animal models and in humans with neuropathic pain. METHODS A literature search was conducted in major medical databases for relevant articles on the chronobiology of neuropathic pain both in animal models and in humans with neuropathic pain. Data extracted included details of specific animal models or specific neuropathic pain conditions in humans, methods and timing of assessing pain severity, and specific findings of diurnal variation in pain intensity or its surrogate markers. RESULTS Thirteen animal and eight human studies published between 1976 and 2020 were included in the analysis. Seven of the 13 animal studies reported specific diurnal variation in pain intensity, with five of the seven studies reporting a trend toward increased sensitivity to mechanical allodynia or thermal hyperalgesia in the late light to dark phase. All eight studies in human subjects reported a diurnal variation in the intensity of neuropathic pain, where there was an increase in pain intensity through the day with peaks in the late evening and early night hours. CONCLUSIONS Studies included in this review demonstrated a diurnal variation in the pattern of neuropathic pain that is distinct from the pattern for nociceptive pain. These findings have implications for potential therapeutic strategies for neuropathic pain.
Collapse
Affiliation(s)
- Sally Hu
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ian Gilron
- Department of Anesthesiology and Perioperative Medicine, Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada
| | - Mandeep Singh
- Department of Anesthesiology and Pain Medicine, University of Toronto, University Health Network-Toronto Western Hospital, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto University Health Network-Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Wei H, Chen Z, Koivisto A, Pertovaara A. Spinal mechanisms contributing to the development of pain hypersensitivity induced by sphingolipids in the rat. Pharmacol Rep 2021; 73:672-679. [PMID: 33389723 PMCID: PMC7994220 DOI: 10.1007/s43440-020-00207-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland
| | - Ari Koivisto
- Research and Development, Orion Corporation, Orion Pharma, Tengströminkatu 8, POB 425, 20101, Turku, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland.
| |
Collapse
|
5
|
Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology 2020; 45:205-216. [PMID: 31207606 PMCID: PMC6879497 DOI: 10.1038/s41386-019-0439-z] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Pain can be both a cause and a consequence of sleep deficiency. This bidirectional relationship between sleep and pain has important implications for clinical management of patients, but also for chronic pain prevention and public health more broadly. The review that follows will provide an overview of the neurobiological evidence of mechanisms thought to be involved in the modulation of pain by sleep deficiency, including the opioid, monoaminergic, orexinergic, immune, melatonin, and endocannabinoid systems; the hypothalamus-pituitary-adrenal axis; and adenosine and nitric oxide signaling. In addition, it will provide a broad overview of pharmacological and non-pharmacological approaches for the management of chronic pain comorbid with sleep disturbances and for the management of postoperative pain, as well as discuss the effects of sleep-disturbing medications on pain amplification.
Collapse
|
6
|
Modeling the daily rhythm of human pain processing in the dorsal horn. PLoS Comput Biol 2019; 15:e1007106. [PMID: 31295266 PMCID: PMC6622484 DOI: 10.1371/journal.pcbi.1007106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Experimental studies show that human pain sensitivity varies across the 24-hour day, with the lowest sensitivity usually occurring during the afternoon. Patients suffering from neuropathic pain, or nerve damage, experience an inversion in the daily modulation of pain sensitivity, with the highest sensitivity usually occurring during the early afternoon. Processing of painful stimulation occurs in the dorsal horn (DH), an area of the spinal cord that receives input from peripheral tissues via several types of primary afferent nerve fibers. The DH circuit is composed of different populations of neurons, including excitatory and inhibitory interneurons, and projection neurons, which constitute the majority of the output from the DH to the brain. In this work, we develop a mathematical model of the dorsal horn neural circuit to investigate mechanisms for the daily modulation of pain sensitivity. The model describes average firing rates of excitatory and inhibitory interneuron populations and projection neurons, whose activity is directly correlated with experienced pain. Response in afferent fibers to peripheral stimulation is simulated by a Poisson process generating nerve fiber spike trains at variable firing rates. Model parameters for fiber response to stimulation and the excitability properties of neuronal populations are constrained by experimental results found in the literature, leading to qualitative agreement between modeled responses to pain and experimental observations. We validate our model by reproducing the wind-up of pain response to repeated stimulation. We apply the model to investigate daily modulatory effects on pain inhibition, in which response to painful stimuli is reduced by subsequent non-painful stimuli. Finally, we use the model to propose a mechanism for the observed inversion of the daily rhythmicity of pain sensation under neuropathic pain conditions. Underlying mechanisms for the shift in rhythmicity have not been identified experimentally, but our model results predict that experimentally-observed dysregulation of inhibition within the DH neural circuit may be responsible. The model provides an accessible, biophysical framework that will be valuable for experimental and clinical investigations of diverse physiological processes modulating pain processing in humans. Human pain sensitivity follows a daily (∼24 hour) rhythm. In particular, humans experience the highest sensitivity to pain in the middle of night and lowest in the afternoon. Patients suffering from neuropathy, a disease resulting from nerve damage leading to an increase in pain sensitivity, experience an approximately 12-hour shift in their rhythmicity such that the highest sensitivity occurs in the afternoon. Neuropathy is a difficult condition to treat since it is often unfeasible to locate the damaged nerve and it is also unclear how this damage causes a shift in rhythmicity and an increase in pain. Understanding the mechanism underlying the shift in rhythmicity may lead to improvements in the knowledge of the transmission of pain from the damaged nerve to the pain-processing center in the spinal cord, and thus better treatment protocols. We have built a population-based model to describe this transmission with a particular focus on daily rhythms. We show that our model reproduces experimentally-observed rhythmicity of both normal pain responses, as well as neuropathic pain. Our model predicts that a potential mechanism underlying the shift in rhythmicity for neuropathic pain is a change in the interaction of the nerve fibers from inhibition to excitation.
Collapse
|
7
|
Carvalho F, Pedrazzoli M, Gasparin A, Dos Santos F, Zortea M, Souza A, da Silva Lucena Torres I, Fregni F, Caumo W. PER3 variable number tandem repeat (VNTR) polymorphism modulates the circadian variation of the descending pain modulatory system in healthy subjects. Sci Rep 2019; 9:9363. [PMID: 31249322 PMCID: PMC6597571 DOI: 10.1038/s41598-019-45527-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
We evaluated the circadian pattern of variation of the descending pain modulatory system (DPMS) using a conditioned pain modulation (CPM) paradigm according to the variable-number tandem-repeat (VNTR) of the clock gene PER3 polymorphism. We assessed the relationship between the genotypes PER34/4 and PER35/5 and the temporal pattern of variation across the day using the following measures: the heat pain threshold (HPT), the cold pressure test (CPT), and the serum levels of BDNF and S100-B protein. The ∆-values (from afternoon to morning) of these measures were used for the analysis. The circadian phenotype was according to the mid-point sleep time established by the Munich ChronoType Questionnaire (MCTQ). We included 18 healthy volunteers (15 women) ages 18 to 30. A Generalized Linear Model (GLM) revealed a significant difference in the ∆-CPM-task between Per34/4 and Per35/5 genotypes, with means (SDs) of -0.41 (0.78) vs. 0.67 (0.90) (χ2 = 7.256; df = 1' P = 0.007), respectively. Both sleep deprivation of at least 2 h/day (B = -0.96, 95% confidence interval (CI) = -1.86 to -0.11)) and the ∆-S100-B protein (-0.03, 95% CI = -0.06 to -0.02) were negatively correlated with the ∆-CPM-task, while the ∆-BDNF was positively correlated with the ∆-CPM-task (0.015, 95% CI = 0.01 to 0.03). We observed a difference in the ∆-CPT between PER34/4 and PER35/5 (0.11 (4.51) vs. 4.00 (2.60), respectively) (χ2 = 22.251; df = 1 P = 0.001). These findings suggest that the polymorphism of PER35/5 is associated with a decrease in the inhibitory function of the DPMS over the course of the day. However, sleep deprivation is an independent factor that also reduces the inhibitory function of the DPMS, regardless of the PER3 VNTR polymorphism.
Collapse
Affiliation(s)
- Fabiana Carvalho
- Post-Graduation Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Mario Pedrazzoli
- School of Arts, Science, and Humanities, Universidade de São Paulo, São Paulo, Brazil
| | - Assunta Gasparin
- Post-Graduation Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Franciele Dos Santos
- Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,School of Medicine, UFRGS, Porto Alegre, Brazil
| | - Maxciel Zortea
- Post-Graduation Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andressa Souza
- Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Health and Human Development, La Salle Universitary Center, Canoas, RS, Brazil
| | | | - Felipe Fregni
- Physical Medicine & Rehabilitation Department, Center of Neuromodulation & Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Post-Graduation Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,Laboratory of Pain & Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil. .,Pain and Palliative Care Service at HCPA, Porto Alegre, Brazil. .,Department of Surgery, School of Medicine, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R. Effects of Tualang honey in modulating nociceptive responses at the spinal cord in offspring of prenatally stressed rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 17:66-70. [PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats. METHODS Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA. RESULTS This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters. CONCLUSION This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.
Collapse
Affiliation(s)
- Che Badariah Abd Aziz
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Siti Qusyasyiah Ahmad Suhaimi
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hidani Hasim
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
TRPA1 Antagonists for Pain Relief. Pharmaceuticals (Basel) 2018; 11:ph11040117. [PMID: 30388732 PMCID: PMC6316422 DOI: 10.3390/ph11040117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Here, we review the literature assessing the role of transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable non-selective cation channel, in various types of pain conditions. In the nervous system, TRPA1 is expressed in a subpopulation of nociceptive primary sensory neurons, astroglia, oligodendrocytes and Schwann cells. In peripheral terminals of nociceptive primary sensory neurons, it is involved in the transduction of potentially harmful stimuli and in their central terminals it is involved in amplification of nociceptive transmission. TRPA1 is a final common pathway for a large number of chemically diverse pronociceptive agonists generated in various pathophysiological pain conditions. Thereby, pain therapy using TRPA1 antagonists can be expected to be a superior approach when compared with many other drugs targeting single nociceptive signaling pathways. In experimental animal studies, pharmacological or genetic blocking of TRPA1 has effectively attenuated mechanical and cold pain hypersensitivity in various experimental models of pathophysiological pain, with only minor side effects, if any. TRPA1 antagonists acting peripherally are likely to be optimal for attenuating primary hyperalgesia (such as inflammation-induced sensitization of peripheral nerve terminals), while centrally acting TRPA1 antagonists are expected to be optimal for attenuating pain conditions in which central amplification of transmission plays a role (such as secondary hyperalgesia and tactile allodynia caused by various types of peripheral injuries). In an experimental model of peripheral diabetic neuropathy, prolonged blocking of TRPA1 has delayed the loss of nociceptive nerve endings and their function, thereby promising to provide a disease-modifying treatment.
Collapse
|
10
|
Pain, opioids, and sleep: implications for restless legs syndrome treatment. Sleep Med 2017; 31:78-85. [PMID: 27964861 DOI: 10.1016/j.sleep.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
|
11
|
Hagenauer MH, Crodelle JA, Piltz SH, Toporikova N, Ferguson P, Booth V. The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence. ASSOCIATION FOR WOMEN IN MATHEMATICS SERIES 2017. [DOI: 10.1007/978-3-319-60304-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wei H, Wu HY, Chen Z, Ma AN, Mao XF, Li TF, Li XY, Wang YX, Pertovaara A. Mechanical antihypersensitivity effect induced by repeated spinal administrations of a TRPA1 antagonist or a gap junction decoupler in peripheral neuropathy. Pharmacol Biochem Behav 2016; 150-151:57-67. [DOI: 10.1016/j.pbb.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/06/2023]
|
13
|
Zeinali H, Manaheji H, Zaringhalam J, Bahari Z, Nazemi S, Sadeghi M. Age-Related Differences in Neuropathic Pain Behavior and Spinal Microglial Activity after L5 Spinal Nerve Ligation in Male Rats. Basic Clin Neurosci 2016; 7:203-12. [PMID: 27563413 PMCID: PMC4981832 DOI: 10.15412/j.bcn.03070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Several studies have reported the involvement of age-related changes in the development of neuropathic pain behaviors. However, limited data are available on the role of age in establishing and maintaining chronic neuropathic pain after peripheral nerve injury. Methods: In the present study, we examined age-related neuropathic behavior among rats in 4 age groups: pups (4 weeks old; weight, 60–80 g), juvenile rats (6 weeks old; weight, 120–140 g), and mature rats (10–12 weeks old; weight, 200–250 g). Because the exact contribution of spinal microglia and its association with the development of neuropathic pain remains unknown, we also evaluated the expression of spinal Iba1, a microglial marker, by using western blotting before and 5 days after spinal nerve ligation (SNL) as well as after the daily IP administration of minocycline (30 mg/kg). Results: Our results showed that SNL-induced mechanical allodynia but not thermal hyperalgesia in mature rats but not in pups (P<0.05 and P<0.01, respectively). The expression of spinal Iba1 in the juvenile rats was significantly lower than that in pups and mature rats (P<0.01). Moreover, administration of minocycline decreased the expression of spinal Iba1 in the pup rats more than in juvenile rats (P<0.001) and in the juvenile rats more than in the mature rats (P<0.05). Conclusion: These data suggest that the development of neuropathic behaviors and microglial activation after SNL could be age dependent.
Collapse
Affiliation(s)
- Hossein Zeinali
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Nazemi
- Department of Physiology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Sadeghi
- Department of Physiology, Faculty of Medicine, Boushehr University of Medical Sciences, Boushehr, Iran
| |
Collapse
|
14
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
15
|
Ma S, Li XY, Gong N, Wang YX. Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. J Pharm Biomed Anal 2015; 116:131-8. [DOI: 10.1016/j.jpba.2015.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 01/01/2023]
|
16
|
Tomim DH, Pontarolla FM, Bertolini JF, Arase M, Tobaldini G, Lima MMS, Fischer L. The Pronociceptive Effect of Paradoxical Sleep Deprivation in Rats: Evidence for a Role of Descending Pain Modulation Mechanisms. Mol Neurobiol 2015; 53:1706-1717. [DOI: 10.1007/s12035-014-9059-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
|
17
|
Shisler D, Austin TM, Delpire E, Sawyer DB, Pandey AK. Syndrome of severe pain associated with a continuous bumetanide infusion. Int J Cardiol 2014; 177:e61-2. [PMID: 25304072 DOI: 10.1016/j.ijcard.2014.09.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/25/2022]
Affiliation(s)
- David Shisler
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Thomas M Austin
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA
| | - Douglas B Sawyer
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA; Department of Cardiac Services, Maine Medical Center, Portland, ME, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|
19
|
|
20
|
Xu Q, Cheong YK, Yang F, Tiwari V, Li J, Liu J, Raja SN, Li W, Guan Y. Intrathecal carbenoxolone inhibits neuropathic pain and spinal wide-dynamic range neuronal activity in rats after an L5 spinal nerve injury. Neurosci Lett 2014; 563:45-50. [PMID: 24486838 DOI: 10.1016/j.neulet.2014.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/10/2014] [Accepted: 01/21/2014] [Indexed: 12/30/2022]
Abstract
Spinal glial gap junctions may play an important role in dorsal horn neuronal sensitization and neuropathic pain. In rats after an L5 spinal nerve ligation (SNL), we examined the effects of intrathecal injection of carbenoxolone (CBX), a gap junction decoupler, on neuropathic pain manifestations and on wide-dynamic range (WDR) neuronal activity in vivo. Intrathecal injection of CBX dose-dependently (0.1-50 μg, 10 μl) inhibited mechanical hypersensitivity in rats at 2-3 weeks post-SNL. However, the same doses of glycyrrhizic acid (an analogue of CBX that does not affect gap junctions) and mefloquine hydrochloride (a selective neuronal gap junction decoupler) were ineffective. Intrathecal CBX (5μg) also attenuated heat hypersensitivity in SNL rats. Further, rats did not develop tachyphylaxis to CBX-induced inhibition of mechanical hypersensitivity after repetitive drug treatments (25 μg/day) during days 14-16 post-SNL. Electrophysiological study in SNL rats showed that spinal topical application of CBX (100 μg, 50 μl), which mimics intrathecal drug administration, attenuated WDR neuronal responses to mechanical stimuli and to repetitive intracutaneous electrical stimuli (0.5 Hz) that induce windup, a short-form of activity-dependent neuronal sensitization. The current findings suggest that the inhibition of neuropathic pain manifestations by intrathecal injection of CBX in SNL rats may involve an inhibition of glial gap junctions and an attenuation of WDR neuronal activity in the dorsal horn.
Collapse
Affiliation(s)
- Qian Xu
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yong-Kwan Cheong
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Pain Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jinheng Li
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 2013; 66:80-101. [PMID: 24335193 DOI: 10.1124/pr.113.008144] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Comorbid depression and chronic pain are highly prevalent in individuals suffering from physical illness. Here, we critically examine the possibility that inflammation is the common mediator of this comorbidity, and we explore the implications of this hypothesis. Inflammation signals the brain to induce sickness responses that include increased pain and negative affect. This is a typical and adaptive response to acute inflammation. However, chronic inflammation induces a transition from these typical sickness behaviors into depression and chronic pain. Several mechanisms can account for the high comorbidity of pain and depression that stem from the precipitating inflammation in physically ill patients. These mechanisms include direct effects of cytokines on the neuronal environment or indirect effects via downregulation of G protein-coupled receptor kinase 2, activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase that generates neurotropic kynurenine metabolites, increased brain extracellular glutamate, and the switch of GABAergic neurotransmission from inhibition to excitation. Despite the existence of many neuroimmune candidate mechanisms for the co-occurrence of depression and chronic pain, little work has been devoted so far to critically assess their mediating role in these comorbid symptoms. Understanding neuroimmune mechanisms that underlie depression and pain comorbidity may yield effective pharmaceutical targets that can treat both conditions simultaneously beyond traditional antidepressants and analgesics.
Collapse
Affiliation(s)
- A K Walker
- Department of Symptom Research Laboratory of Neuroimmunology of Cancer-Related Symptoms at the Institute of Biosciences and Technology, Texas A&M Health Sciences Center, 2121 W. Holcombe Boulevard, Room 1025, Houston, TX 77030.
| | | | | | | |
Collapse
|
22
|
Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacol Biochem Behav 2013; 111:30-6. [PMID: 23958579 DOI: 10.1016/j.pbb.2013.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/27/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022]
Abstract
We studied the hypothesis that spinal d-amino acid oxidase (DAAO) that is expressed in astrocytes and that has been reported to promote tonic pain in various pathophysiological conditions plays a role in 'physiological' pain hypersensitivity induced by rapid eye movement sleep deprivation (REMSD). The experiments were performed in healthy rats with a chronic intrathecal (i.t.) catheter. Pain behavior was assessed by determining limb withdrawal response to repetitive stimulation of the hind paw with a calibrated series of monofilaments. REMSD of 48 h duration produced a significant mechanical hypersensitivity. At 48 h of REMSD, the animals were treated i.t. with a DAAO inhibitor or vehicle. Three structurally different DAAO inhibitors were tested in this study: 6-chlorobenzo[d]isoxazol-3-ol (CBIO), sodium benzoate, and 5-methylpyrazole-3-carboxylic acid (AS-057278). CBIO (1-3 μg), sodium benzoate (30-100 μg) and AS-057278 (3-10 μg) produced dose-related antihypersensitivity effects in sleep-deprived animals. In control animals (with no sleep deprivation), the currently used doses of DAAO inhibitors failed to produce significant changes in mechanically evoked pain behavior. The results indicate that among spinal pain facilitatory mechanisms that contribute to the sleep deprivation-induced mechanical pain hypersensitivity is DAAO, presumably due to production of reactive oxygen species, such as hydrogen peroxide, an endogenous agonist of the pronociceptive TRPA1 ion channel.
Collapse
|
23
|
Schuh-Hofer S, Wodarski R, Pfau DB, Caspani O, Magerl W, Kennedy JD, Treede RD. One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain 2013; 154:1613-1621. [PMID: 23707287 DOI: 10.1016/j.pain.2013.04.046] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 04/03/2013] [Accepted: 04/19/2013] [Indexed: 12/25/2022]
Abstract
Sleep disturbances are highly prevalent in chronic pain patients. Understanding their relationship has become an important research topic since poor sleep and pain are assumed to closely interact. To date, human experimental studies exploring the impact of sleep disruption/deprivation on pain perception have yielded conflicting results. This inconsistency may be due to the large heterogeneity of study populations and study protocols previously used. In addition, none of the previous studies investigated the entire spectrum of nociceptive modalities. To address these shortcomings, a standardized comprehensive quantitative sensory protocol was used in order to compare the somatosensory profile of 14 healthy subjects (6 female, 8 male, 23.5 ± 4.1 year; mean ± SD) after a night of total sleep deprivation (TSD) and a night of habitual sleep in a cross-over design. One night of TSD significantly increased the level of sleepiness (P<0.001) and resulted in higher scores of the State Anxiety Inventory (P<0.01). In addition to previously reported hyperalgesia to heat (P<0.05) and blunt pressure (P<0.05), study participants developed hyperalgesia to cold (P<0.01) and increased mechanical pain sensitivity to pinprick stimuli (P<0.05) but no changes in temporal summation. Paradoxical heat sensations or dynamic mechanical allodynia were absent. TSD selectively modulated nociception, since detection thresholds of non-nociceptive modalities remained unchanged. Our findings show that a single night of TSD is able to induce generalized hyperalgesia and to increase State Anxiety scores. In the future, TSD may serve as a translational pain model to elucidate the pathomechanisms underlying the hyperalgesic effect of sleep disturbances.
Collapse
Affiliation(s)
- Sigrid Schuh-Hofer
- Institute of Neurophysiology, Centre of Biomedicine and Medical Technology Mannheim, Heidelberg University, 68167 Mannheim, Germany Zentrum für Neurologie, Abteilung Epileptologie, Universitätsklinikum Tübingen der Eberhard Karls Universität, Germany Eli Lilly & Company, Erl Wood Manor, Windlesham, Surrey GU2 06PH, UK Eli Lilly & Company, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wei H, Huang JL, Hao B, Wang YC, Nian G, Ma AN, Li XY, Wang YX, Pertovaara A. Intrathecal administration of antioxidants attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Scand J Pain 2011; 2:64-69. [PMID: 29913726 DOI: 10.1016/j.sjpain.2011.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Background Sleep deprivation as well as peripheral neuropathy and cutaneous neurogenic inflammation has a facilitatory effect on pain perception. Here we studied whether oxidative stress-related mechanisms in the spinal cord that have been shown to contribute to pain facilitation in peripheral neuropathy and cutaneous neurogenic inflammation play a role in sleep deprivation-induced pain hypersensitivity Methods Flower pot method was used to induce rapid eye movement sleep deprivation (REMSD) of 48 h duration in the rat that had a chronic intrathecal (i.t.) catheter for spinal administration of drugs. Pain behavior was assessed by determining the monofilament-induced limb withdrawal response. Results REMSD of 48 h produced mechanical hypersensitivity that was attenuated in a dose-related fashion by i.t. administration of two different antioxidants, phenyl-N-tert-butylnitrone (PBN) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1 oxyl (TEMPOL). While both antioxidants attenuated mechanical pain behavior also in control animals, their effects were significantly stronger after REMSD than in control conditions. Conversely, i.t. administration of a reactive oxygen species (ROS) donor, tert-butylhydroperoxide (t-BOOH), in control animals produced pain hypersensitivity that was prevented by i.t. pretreatment with an antioxidant, TEMPOL. I.t. treatment with PBN or TEMPOL at the currently used doses failed to influence motor behavior in the Rotarod test. Conclusions The results indicate that among common mechanisms contributing to mechanical pain hypersensitivity following sleep deprivation as well as nerve injury or neurogenic inflammation is oxidative stress in the spinal cord. Implications Compounds with antioxidant properties might prove useful in suppressing the vicious pronociceptive interaction between chronic pain and sleep-deprivation.
Collapse
Affiliation(s)
- Hong Wei
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.,Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Jin-Lu Huang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Bin Hao
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan-Chao Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Gong Nian
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ai-Niu Ma
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xin-Yan Li
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yong-Xiang Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Antti Pertovaara
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
25
|
Gramstad L, Linderoth B. Poor sleep and pain: Does spinal oxidative stress play a role? Scand J Pain 2011; 2:62-63. [DOI: 10.1016/j.sjpain.2011.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lars Gramstad
- Norwegian Medicines Agency , Sven Oftedals vei 8, 0950 Oslo , Norway
| | - Bengt Linderoth
- Department of Clinical Neuroscience , Karolinska Institutet , 10401 Stockholm , Sweden
| |
Collapse
|