1
|
Han Y, Chen S, Yang Q, Xie M, Liang Y, Li J, Zhang LZ. Non-peptide orphanin receptor antagonist activity in rat myocardial ischemia-induced cardiac arrhythmias. Biochem Biophys Res Commun 2023; 685:149160. [PMID: 37922788 DOI: 10.1016/j.bbrc.2023.149160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
One of the causes of sudden cardiac death is arrhythmia after acute myocardial ischemia. After ischemia, endogenous orphanin (N/OFQ) plays a role in the development of arrhythmias. It is discussed in this paper how nonpeptide orphanin receptor (ORL1) antagonists such as J-113397, SB-612111 and compound-24 (C-24) affect arrhythmia in rats following acute myocardial ischemia and what the optimal concentrations for these antagonists are. The electrocardiogram of the rat was recorded as part of the experiment. The concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the myocardium were measured following euthanasia. Following the use of three antagonists, we found the lowest inflammatory factor concentrations and the smallest number of ischemic arrhythmia episodes. All of them had a small impact on cardiac function. LF/HF values were significantly reduced in all three antagonist groups, suggesting that they are involved in the regulation of sympathetic nerves. In conclusion, pretreatment with the three antagonist groups can effectively reduce the concentration of TNF-α and IL-1β, and the occurrence of arrhythmias after ischemia can also be significantly reduced. Inflammation and sympathetic activity may be related to the mechanism of action of antagonists.
Collapse
Affiliation(s)
- Yi Han
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, 030000, China; College of Anesthesiology, Shanxi Medical University, Taiyuan, 030000, China.
| | - Sikun Chen
- Department of Anesthesiology, Linfen People's Hospital, Linfen, 041000, China
| | - Qixing Yang
- Department of Anesthesiology, Linfen People's Hospital, Linfen, 041000, China
| | - Mengli Xie
- Department of Anesthesiology, Xi 'an Honghui Hospital, Xian, 710000, China
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Jing Li
- Department of Endocrine, Central Hospital of China Railway 12th Bureau Group, 182 Yingze Road, Taiyuan, 030001, Shanxi, China
| | - Lin-Zhong Zhang
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, 030000, China; College of Anesthesiology, Shanxi Medical University, Taiyuan, 030000, China
| |
Collapse
|
2
|
Parlar A, Arslan SO, Çam SA. Glabridin Alleviates Inflammation and Nociception in Rodents by Activating BK Ca Channels and Reducing NO Levels. Biol Pharm Bull 2020; 43:884-897. [DOI: 10.1248/bpb.b20-00038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ali Parlar
- Department of Pharmacology, Faculty of Medicine, University of Adiyaman
| | | | - Saliha Ayşenur Çam
- Department of Pharmacology, Faculty of Medicine, University of Ankara Yildirim Beyazit
| |
Collapse
|
3
|
Dehkordi FM, Kaboutari J, Zendehdel M, Javdani M. The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems. Korean J Pain 2019; 32:160-167. [PMID: 31257824 PMCID: PMC6615442 DOI: 10.3344/kjp.2019.32.3.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. METHODS On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. RESULTS Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. CONCLUSIONS It seems that antinocicptive effects of artemisinin are mediated by GABAA receptors.
Collapse
Affiliation(s)
- Faraz Mahdian Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| | - Jahangir Kaboutari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran,
Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| |
Collapse
|
4
|
Effects of a Nociceptin Receptor Antagonist on Experimentally Induced Scratching Behavior in Mice. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Landa-Juárez AY, Ortiz MI, Castañeda-Hernández G, Chávez-Piña AE. Participation of potassium channels in the antinociceptive effect of docosahexaenoic acid in the rat formalin test. Eur J Pharmacol 2016; 793:95-100. [DOI: 10.1016/j.ejphar.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023]
|
6
|
Okamoto K, Ohashi M, Ohno K, Takeuchi A, Matsuoka E, Fujisato K, Minami T, Ito S, Okuda-Ashitaka E. Involvement of NIPSNAP1, a neuropeptide nocistatin-interacting protein, in inflammatory pain. Mol Pain 2016; 12:12/0/1744806916637699. [PMID: 27030720 PMCID: PMC4956003 DOI: 10.1177/1744806916637699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/19/2015] [Indexed: 11/15/2022] Open
Abstract
Background Chronic pain associated with inflammation is an important clinical problem, and the underlying mechanisms remain poorly understood. 4-Nitrophenylphosphatase domain and nonneuronal SNAP25-like protein homolog (NIPSNAP) 1, an interacting protein with neuropeptide nocistatin, is implicated in the inhibition of tactile pain allodynia. Although nocistatin inhibits some inflammatory pain responses, whether NIPSNAP1 affects inflammatory pain appears to be unclear. Here, we examined the nociceptive behavioral response of NIPSNAP1-deficient mice and the expression of NIPSNAP1 following peripheral inflammation to determine the contribution of NIPSNAP1 to inflammatory pain. Results Nociceptive behavioral response increased in phase II of the formalin test, particularly during the later stage (26–50 min) in NIPSNAP1-deficient mice, although the response during phase I (0–15 min) was not significantly different between the deficient and wild-type mice. Moreover, phosphorylation of extracellular signal-related kinase was enhanced in the spinal dorsal horn of the deficient mice. The prolonged inflammatory pain induced by carrageenan and complete Freund’s adjuvant was exacerbated in NIPSNAP1-deficient mice. NIPSNAP1 mRNA was expressed in small- and medium-sized neurons of the dorsal root ganglion and motor neurons of the spinal cord. In the formalin test, NIPSNAP1 mRNA was slightly increased in dorsal root ganglion but not in the spinal cord. In contrast, NIPSNAP1 mRNA levels in dorsal root ganglion were significantly decreased during 24–48 h after carrageenan injection. Prostaglandin E2, a major mediator of inflammation, stimulated NIPSNAP1 mRNA expression via the cAMP-protein kinase A signaling pathway in isolated dorsal root ganglion cells. Conclusions These results suggest that changes in NIPSNAP1 expression may contribute to the pathogenesis of inflammatory pain.
Collapse
Affiliation(s)
- Kazuya Okamoto
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Masaki Ohashi
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Kana Ohno
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Arisa Takeuchi
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Etsuko Matsuoka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Kyohei Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Takatsuki, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Japan
| | - Emiko Okuda-Ashitaka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
7
|
Wang Y, Long H, Jian F, Li X, Yang X, Zhao Z, Lai W. Nociceptin/orphanin FQ up-regulates P2X3receptors in primary cultures of neonatal rat trigeminal ganglion neurons. Eur J Oral Sci 2015; 123:409-15. [PMID: 26607208 DOI: 10.1111/eos.12228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Wang
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Hu Long
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Fan Jian
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - Xin Yang
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases and Department of Orthodontics; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
8
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Parenti C, Turnaturi R, Aricò G, Gramowski-Voss A, Schroeder OHU, Marrazzo A, Prezzavento O, Ronsisvalle S, Scoto GM, Ronsisvalle G, Pasquinucci L. The multitarget opioid ligand LP1's effects in persistent pain and in primary cell neuronal cultures. Neuropharmacology 2013; 71:70-82. [PMID: 23541722 DOI: 10.1016/j.neuropharm.2013.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Persistent pain states, such as those caused by nerve injury or inflammation, are associated with altered sensations, allodynia and hyperalgesia, that are resistant to traditional analgesics. A contribution to development and maintenance in altered pain perception comes from nociceptive processing and descending modulation from supraspinal sites. A multitarget ligand seems to be useful for pain relief with a decreased risk of adverse events and a considerable analgesic efficacy. The multitarget MOR agonist-DOR antagonist LP1, (3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benazocin-3(2H)-yl]-N-phenylpropanamide, is a central acting antinociceptive agent with low potential to induce tolerance. LP1 was tested in models of neuropathic pain - induced by chronic constriction injury (CCI) of the left sciatic nerve - and inflammatory pain - produced by intraplantar injection of carrageenan. In CCI rats, subcutaneous (s.c.) LP1 (3 mg/kg) showed a significant antiallodynic effect, measured with von Frey filaments, and antihyperalgesic effect, evoked in response to a radiant heat stimulus with plantar test. Analogously, LP1 significantly reduced allodynic and hyperalgesic thresholds in a model of inflammatory pain induced by carrageenan. To evaluate the contribution of opioid receptor subtypes in LP1 antinociceptive effects, the multitarget LP1 profile was assessed using selective opioid antagonists. Moreover, functional electrophysiological in vitro assays, using primary cortical and spinal cord networks, allowed to define the "pharmacological fingerprint" of LP1. The EC₅₀ values in this functional screening seem to confirm LP1 as a potent opioid ligand (EC₅₀ = 0.35 fM and EC₅₀ = 44 pM in spinal cord and frontal cortex, respectively). Using a NeuroProof data-base of well characterised reference compounds, a similarity profile of LP1 to opioid and non-opioid drugs involved in pain modulation was detected. Our studies seem to support that multitarget ligand approach should be useful for persistent pain conditions in which mechanical allodynia and thermal hyperalgesia are significant components of the nociceptive response.
Collapse
Affiliation(s)
- Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|