1
|
Fang Z, Chen J, Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for Memory Regulation: An Emotional Perspective. Curr Neuropharmacol 2024; 22:1846-1869. [PMID: 38288837 PMCID: PMC11284729 DOI: 10.2174/1570159x22666240128003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 07/23/2024] Open
Abstract
Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Zhuowen Fang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
3
|
Fernandes CEM, Serafim KR, Gianlorenco ACL, Mattioli R. Intra-vermis H4 receptor agonist impairs performance in anxiety- and fear-mediated models. Brain Res Bull 2017; 135:179-184. [PMID: 29097243 DOI: 10.1016/j.brainresbull.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
Abstract
The neural histaminergic system modulates cognitive performance in various animal models. However, little is known about the effects of the H4 histaminergic receptor in the central nervous system. The purpose of this study was to investigate the effect of histaminergic H4 agonist VUF-8430 microinjection into the cerebellar vermis on the consolidation of emotional memory in mice subjected to the elevated plus maze (EPM) and inhibitory avoidance task (IAT). All experiments were performed on two consecutive days: exposure (T1 and D1) and 24h after, which we called re-exposure (T2 and D2). The animals received saline (SAL) or VUF (0.15 nmol; 0.49 nmol; 1.48 nmol/0.1μl) administered post-exposure. Experiment 1 was conducted in the EPM, and the animals were free to explore the maze for 5min. In T1, immediately after exposure, the pharmacological treatment was given; in T2, there was only re-exposure to the EPM. Experiment 2 involved the IAT, and the pharmacological treatment was provided post-D1; in D2, the animals were only re-exposed to the IAT. In Experiment 1, increased open arm exploration (% open arm entries and% open arms time) for 0.49 and 1.48nmol of VUF were recorded in T2 compared to T1. In Experiment 2, a significant decrease in consolidation latency was recorded for the group that received 1.48nmol of VUF compared to the SAL group in D2. These results indicate that a 1.48nmol VUF microinjection into the cerebellar vermis impaired performance in both models, even though one model was anxiety-mediated (EPM) and the other was fear-mediated (IAT).
Collapse
Affiliation(s)
- C E M Fernandes
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - K R Serafim
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - A C L Gianlorenco
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - R Mattioli
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| |
Collapse
|
4
|
Gatica RI, Pérez-Valenzuela E, Sierra-Mercado D, Fuentealba JA. The expression of amphetamine sensitization is dissociable from anxiety and aversive memory: Effect of an acute injection of amphetamine. Neurosci Lett 2016; 638:21-26. [PMID: 27939979 DOI: 10.1016/j.neulet.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
Abstract
The repeated administration of amphetamine can lead to locomotor sensitization. Although the repeated administration of amphetamine has been associated with anxiety and impaired working memory, it is uncertain if expression of amphetamine sensitization is associated with modifications of emotional memories. To address this issue, rats were injected once daily with amphetamine for five consecutive days (1.5mg/kg). After four days of withdrawal, rats were delivered an acute amphetamine injection to assess the expression of sensitization. A single exposure to an elevated plus maze (EPM), 24h after the last injection of amphetamine, showed that amphetamine sensitization is not accompanied by anxiety. Next, aversive memory was assessed using an 11day inter-trial interval between the EPM Trial 1 and EPM Trial 2. Rats administered with saline showed a percentage of open arms time (% OAT) in Trial 2 that was comparable to Trial 1, demonstrating a reduction in the retrieval of aversive memory. However, rats sensitized after the EPM Trial 1 showed a significant decrease in the % OAT in Trial 2. Importantly, a decrease in the % OAT in Trial 2 compared to Trial 1 was also observed after a single injection of amphetamine 24h before Trial 2. These results show a facilitation in the retrieval of aversive memory, and suggest that a previous amphetamine injection is enough to produce a protracted activation of neural circuits necessary for the retrieval of aversive memory.
Collapse
Affiliation(s)
- Rafael Ignacio Gatica
- Departamento de Farmacia and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Pérez-Valenzuela
- Departamento de Farmacia and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Demetrio Sierra-Mercado
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, 00936
| | - José Antonio Fuentealba
- Departamento de Farmacia and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Abstract
Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety.
Collapse
|
6
|
Intra-amygdala microinjections of chlorpheniramine impair memory formation or memory retrieval in anxiety- and fear-mediated models. Brain Res Bull 2016; 125:127-33. [PMID: 27344002 DOI: 10.1016/j.brainresbull.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
Abstract
H1 receptor histaminergic antagonist, chlorpheniramine (CPA) participates in cognitive performance in various animal models. However, little is known regarding the effects of CPA microinjection into the amygdala on emotional behavior. The purpose of this study was to investigate whether CPA microinjection into the amygdala has the same effect on two models, one anxiety- and the other fear-mediated, in various memory stages using the elevated plus maze (EPM) and the inhibitory avoidance task (IAT) tests. Two experiments were performed with seventy-two adult male Swiss mice. Behavioral testing was performed on two consecutive days, and in both experiments, before each trial, the animals received bilateral microinjections of saline (SAL) or CPA (0.16 nmol). The animals were re-exposed to the EPM or IAT 24h after the first trial. Four experimental groups were tested: SAL-SAL, SAL-CPA, CPA-SAL and CPA-CPA. In experiment 1, a decreased open arm exploration (% open arm entries, %OAE and% open arms time, %OAT) for SAL-SAL and SAL-CPA was showed, while these measures did not decrease for the CPA-SAL and CPA-CPA groups in Trial 2. In experiment 2, an increase of retention latency in relation to training 2 for the groups SAL-SAL and CPA-SAL and a significant decrease in latency for the group SAL-CPA was revealed. These results indicate that chlorpheniramine microinjection into the amygdala impairs emotional memory acquisition and/or consolidation in the EPM and retrieval of IAT.
Collapse
|