1
|
DeVito EE, Sofuoglu M. Catechol-O-Methyltransferase Effects on Smoking: A Review and Proof of Concept of Sex-Sensitive Effects. Curr Behav Neurosci Rep 2022; 9:113-123. [PMID: 36644316 PMCID: PMC9838826 DOI: 10.1007/s40473-022-00251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Purpose of Review This article reviews recent research on how catechol-O-methyltransferase (COMT) may impact cigarette smoking behavior, and how effects may be sex-sensitive. Preliminary data are presented on sex-sensitive effects of COMT on response to short-term abstinence in individuals who smoke. Recent Findings Although research is mixed, functional variants in the COMT gene have been linked with smoking behavior, cessation outcomes and nicotine abstinence-related symptoms. Our proof-of-concept preliminary data from a human laboratory study of individuals who smoke cigarettes found that those with the high COMT enzyme activity genotype (Val/Val) reported more severe smoking urges and withdrawal symptoms following overnight abstinence than Met carriers. These effects were present in women, but not in men and were abstinent-dependent, in that they dissipated following nicotine administration. Summary The preliminary data showing sex-sensitive pharmacogenetic effects may shed light on mechanisms contributing to sex differences in barriers to smoking cessation or potential sex-specific treatment options.
Collapse
Affiliation(s)
- Elise E. DeVito
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mehmet Sofuoglu
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
2
|
Ye Z, Mo C, Liu S, Hatch KS, Gao S, Ma Y, Hong LE, Thompson PM, Jahanshad N, Acheson A, Garavan H, Shen L, Nichols TE, Kochunov P, Chen S, Ma T. White Matter Integrity and Nicotine Dependence: Evaluating Vertical and Horizontal Pleiotropy. Front Neurosci 2021; 15:738037. [PMID: 34720862 PMCID: PMC8551454 DOI: 10.3389/fnins.2021.738037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023] Open
Abstract
Tobacco smoking is an addictive behavior that supports nicotine dependence and is an independent risk factor for cancer and other illnesses. Its neurogenetic mechanisms are not fully understood but may act through alterations in the cerebral white matter (WM). We hypothesized that the vertical pleiotropic pathways, where genetic variants influence a trait that in turn influences another trait, link genetic factors, integrity of cerebral WM, and nicotine addiction. We tested this hypothesis using individual genetic factors, WM integrity measured by fractional anisotropy (FA), and nicotine dependence-related smoking phenotypes, including smoking status (SS) and cigarettes per day (CPDs), in a large epidemiological sample collected by the UK Biobank. We performed a genome-wide association study (GWAS) to identify previously reported loci associated with smoking behavior. Smoking was found to be associated with reduced WM integrity in multiple brain regions. We then evaluated two competing vertical pathways: Genes → WM integrity → Smoking versus Genes → Smoking → WM integrity and a horizontal pleiotropy pathway where genetic factors independently affect both smoking and WM integrity. The causal pathway analysis identified 272 pleiotropic single-nucleotide polymorphisms (SNPs) whose effects on SS were mediated by FA, as well as 22 pleiotropic SNPs whose effects on FA were mediated by CPD. These SNPs were mainly located in important susceptibility genes for smoking-induced diseases NCAM1 and IREB2. Our findings revealed the role of cerebral WM in the maintenance of the complex addiction and provided potential genetic targets for future research in examining how changes in WM integrity contribute to the nicotine effects on the brain.
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hugh Garavan
- Department of Psychiatry, The University of Vermont, Burlington, VT, United States
| | - Li Shen
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
3
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Pritikin JN, Neale MC, Prom-Wormley EC, Clark SL, Verhulst B. GW-SEM 2.0: Efficient, Flexible, and Accessible Multivariate GWAS. Behav Genet 2021; 51:343-357. [PMID: 33604756 DOI: 10.1007/s10519-021-10043-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Most genome-wide association study (GWAS) analyses test the association between single-nucleotide polymorphisms (SNPs) and a single trait or outcome. While valuable second-step analyses of these associations (e.g., calculating genetic correlations between traits) are common, single-step multivariate analyses of GWAS data are rarely performed. This is unfortunate because multivariate analyses can reveal information which is irrevocably obscured in multi-step analysis. One simple example is the distinction between variance common to a set of measures, and variance specific to each. Neither GWAS of sum- or factor-scores, nor GWAS of the individual measures will deliver a clean picture of loci associated with each measure's specific variance. While multivariate GWAS opens up a broad new landscape of feasible and informative analyses, its adoption has been slow, likely due to the heavy computational demands and difficulties specifying models it requires. Here we describe GW-SEM 2.0, which is designed to simplify model specification and overcome the inherent computational challenges associated with multivariate GWAS. In addition, GW-SEM 2.0 allows users to accurately model ordinal items, which are common in behavioral and psychological research, within a GWAS context. This new release enhances computational efficiency, allows users to select the fit function that is appropriate for their analyses, expands compatibility with standard genomic data formats, and outputs results for seamless reading into other standard post-GWAS processing software. To demonstrate GW-SEM's utility, we conducted (1) a series of GWAS using three substance use frequency items from data in the UK Biobank, (2) a timing study for several predefined GWAS functions, and (3) a Type I Error rate study. Our multivariate GWAS analyses emphasize the utility of GW-SEM for identifying novel patterns of associations that vary considerably between genomic loci for specific substances, highlighting the importance of differentiating between substance-specific use behaviors and polysubstance use. The timing studies demonstrate that the analyses take a reasonable amount of time and show the cost of including additional items. The Type I Error rate study demonstrates that hypothesis tests for genetic associations with latent variable models follow the hypothesized uniform distribution. Taken together, we suggest that GW-SEM may provide substantially deeper insights into the underlying genomic architecture for multivariate behavioral and psychological systems than is currently possible with standard GWAS methods. The current release of GW-SEM 2.0 is available on CRAN (stable release) and GitHub (beta release), and tutorials are available on our github wiki ( https://jpritikin.github.io/gwsem/ ).
Collapse
Affiliation(s)
- Joshua N Pritikin
- The Department of Psychiatry, Virginia Commonwealth University, Richmond, USA
- The Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA
| | - Michael C Neale
- The Department of Psychiatry, Virginia Commonwealth University, Richmond, USA
- The Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA
- The Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
| | - Elizabeth C Prom-Wormley
- The Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, USA
| | - Shaunna L Clark
- The Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, USA
| | - Brad Verhulst
- The Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, USA.
| |
Collapse
|
5
|
Xu K, Li B, McGinnis KA, Vickers-Smith R, Dao C, Sun N, Kember RL, Zhou H, Becker WC, Gelernter J, Kranzler HR, Zhao H, Justice AC. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat Commun 2020; 11:5302. [PMID: 33082346 PMCID: PMC7598939 DOI: 10.1038/s41467-020-18489-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Here we report a large genome-wide association study (GWAS) for longitudinal smoking phenotypes in 286,118 individuals from the Million Veteran Program (MVP) where we identified 18 loci for smoking trajectory of current versus never in European Americans, one locus in African Americans, and one in Hispanic Americans. Functional annotations prioritized several dozen genes where significant loci co-localized with either expression quantitative trait loci or chromatin interactions. The smoking trajectories were genetically correlated with 209 complex traits, for 33 of which smoking was either a causal or a consequential factor. We also performed European-ancestry meta-analyses for smoking status in the MVP and GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) (Ntotal = 842,717) and identified 99 loci for smoking initiation and 13 loci for smoking cessation. Overall, this large GWAS of longitudinal smoking phenotype in multiple populations, combined with a meta-GWAS for smoking status, adds new insights into the genetic vulnerability for smoking behavior.
Collapse
Affiliation(s)
- Ke Xu
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Boyang Li
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | | | | | - Cecilia Dao
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Ning Sun
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Rachel L Kember
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Hang Zhou
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - William C Becker
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Joel Gelernter
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Hongyu Zhao
- Yale School of Medicine, New Haven, CT, 06511, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Amy C Justice
- Yale School of Medicine, New Haven, CT, 06511, USA.
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
6
|
Koeneke A, Ponce G, Troya-Balseca J, Palomo T, Hoenicka J. Ankyrin Repeat and Kinase Domain Containing 1 Gene, and Addiction Vulnerability. Int J Mol Sci 2020; 21:ijms21072516. [PMID: 32260442 PMCID: PMC7177674 DOI: 10.3390/ijms21072516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/13/2023] Open
Abstract
The TaqIA single nucleotide variant (SNV) has been tested for association with addictions in a huge number of studies. TaqIA is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) that codes for a receptor interacting protein kinase. ANKK1 maps on the NTAD cluster along with the dopamine receptor D2 (DRD2), the tetratricopeptide repeat domain 12 (TTC12) and the neural cell adhesion molecule 1 (NCAM1) genes. The four genes have been associated with addictions, although TTC12 and ANKK1 showed the strongest associations. In silico and in vitro studies revealed that ANKK1 is functionally related to the dopaminergic system, in particular with DRD2. In antisocial alcoholism, epistasis between ANKK1 TaqIA and DRD2 C957T SNVs has been described. This clinical finding has been supported by the study of ANKK1 expression in peripheral blood mononuclear cells of alcoholic patients and controls. Regarding the ANKK1 protein, there is direct evidence of its location in adult and developing central nervous system. Together, these findings of the ANKK1 gene and its protein suggest that the TaqIA SNV is a marker of brain differences, both in structure and in dopaminergic function, that increase individual risk to addiction development.
Collapse
Affiliation(s)
- Alejandra Koeneke
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Europea Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Guillermo Ponce
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain;
| | - Johanna Troya-Balseca
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Tomás Palomo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-936009751 (ext. 77833)
| |
Collapse
|
7
|
Hagerty SL, YorkWilliams SL, Bidwell LC, Weiland BJ, Sabbineni A, Blaine SK, Bryan AD, Hutchison KE. DRD2 methylation is associated with executive control network connectivity and severity of alcohol problems among a sample of polysubstance users. Addict Biol 2020; 25:e12684. [PMID: 30370960 PMCID: PMC7326368 DOI: 10.1111/adb.12684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
Chronic exposure to alcohol and other drugs of abuse has been associated with deleterious consequences, including functional connectivity deficits within neural networks associated with executive control. Altered functional connectivity within the executive control network (ECN) might underlie the progressive inability to control consumption of alcohol and other drugs as substance use disorders progress. Genetic and epigenetic factors have been associated with substance use disorders (SUDs). For example, dopamine receptor 2 (DRD2) functioning has been associated with alcohol use disorder (AUD) and related phenotypes, including correlates of executive functioning. The present study aims to explore the relationship between a continuous measure of alcohol-related problems, epigenetic markers (methylation) within the DRD2 gene, and functional connectivity within the ECN among a sample of polysubstance users. A community sample of 658 subjects, whose consumption of alcohol, nicotine, and cannabis span across a spectrum of quantity and frequency of use, were obtained across previous studies in polysubstance using populations. Resting state functional magnetic resonance imaging was analyzed to identify intrinsic connectivity networks using a priori regions of interest. Methylation measurement of functionally relevant sites within the DRD2 gene was achieved via pyrosequencing. Regression-based models, including mediation and moderation models, tested the association between DRD2 methylation, functional connectivity within intrinsic neural networks (including the ECN), and severity of alcohol problems. Results suggest that average DRD2 methylation was negatively associated with right ECN (RECN) and left ECN (LECN) connectivity, but not associated with other networks tested, and DRD2 methylation was significantly associated with alcohol problems severity. Mediation models were not supported, although moderation models suggested that connectivity between edges within the RECN moderated the relationship between DRD2 methylation and AUD severity. Results support a theoretical model in which epigenetic factors are associated with neurobiological correlates of alcohol consumption among a sample of polysubstance users.
Collapse
Affiliation(s)
- Sarah L. Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sophie L. YorkWilliams
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L. Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Barbara J. Weiland
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sara K. Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Angela D. Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
8
|
Wong EC, Haardörfer R, Windle M, Berg CJ. Distinct Motives for Use Among Polytobacco Versus Cigarette Only Users and Among Single Tobacco Product Users. Nicotine Tob Res 2018; 20:117-123. [PMID: 27798088 DOI: 10.1093/ntr/ntw284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022]
Abstract
Background Alternative tobacco product (ATP) use as well as co-use of various tobacco products has increased in recent years, particularly among young adults. However, little is known about the differential role of motives for ATP or polytobacco use. Methods We examined (1) motives for tobacco use in relation to polytobacco versus cigarette only use and (2) motives for tobacco use in relation to levels of tobacco use across products. We analyzed data from past 30-day tobacco users at Wave 2 (Spring 2015) of a six-wave longitudinal study of 3418 students aged 18-25 years from seven U.S. colleges/universities. Variables included sociodemographics, tobacco use (cigarettes, little cigars/cigarillos [LCCs], smokeless tobacco [SLT], hookah, and e-cigarettes), and tobacco use motives (social, self-enhancement, boredom relief, and affect regulation). Results Multivariate analyses found that boredom relief motives were associated with polytobacco use versus cigarette only use (p = .007). Higher consumption levels demonstrated the following associations: cigarettes-positively with boredom relief (p = .025) and affect regulation motives (p < .001); LCCs-positively with affect regulation motives (p = .035); SLT-negatively with social (p = .003) and positively with self-enhancement (p = .017) and boredom relief motives (p = .007); and hookah-positively with social (p = .002) and boredom relief motives (p = .033) and negatively with self-enhancement (p = .004) and affect regulation motives (p = .001). Conclusions Distinct motives for use were associated with polytobacco use among smokers. Moreover, higher levels of use among single product users also demonstrated distinct associations across use motives. These data should inform targeted cessation interventions addressing motives for use in ATP and polytobacco users. Implications Interventionists, public health practitioners, and health care providers must address the increasing issue of ATP and polytobacco use and tailor interventions to reduce ATP and polytobacco use in light of the distinct motives for use.
Collapse
Affiliation(s)
- Eugene C Wong
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Regine Haardörfer
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Michael Windle
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Carla J Berg
- Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Further replication of the synergistic interaction between LPHN3 and the NTAD gene cluster on ADHD and its clinical course throughout adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28624582 DOI: 10.1016/j.pnpbp.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common and highly heritable neuropsychiatric disorder. Despite the high heritability, the unraveling of specific genetic factors related to ADHD is hampered by its considerable genetic complexity. Recent evidence suggests that gene-gene interactions can explain part of this complexity. We examined the impact of strongly supported interaction effects between the LPHN3 gene and the NTAD gene cluster (NCAM1-TTC12-ANKK1-DRD2) in a 7-year follow-up of a clinical sample of adults with ADHD, addressing associations with susceptibility, symptomatology and stability of diagnosis. The sample comprises 548 adults with ADHD and 643 controls. Entropy-based analysis indicated a potential interaction between the LPHN3-rs6551665 and TTC12-rs2303380 SNPs influencing ADHD symptom counts. Further analyses revealed significant interaction effects on ADHD total symptoms (p=0.002), and with hyperactivity/impulsivity symptom counts (p=0.005). In the group composed by predominantly hyperactive/impulsive and combined presentation, the presence of LPHN3-rs6551665 G allele was related to increased ADHD risk only in individuals carrying the TTC12-rs2303380 AA genotype (p=0.026). Also, the same allelic constellation is involved in maintenance of ADHD in a predominantly hyperactive/impulsive or combined presentation after a 7-year follow-up (p=0.008). These observations reinforce and replicate previous evidence suggesting that an interaction effect between the LPHN3 gene and the NTAD cluster may have a role in the genetic substrate associated to ADHD also in adults. Moreover, it is possible that the interactions between LPHN3 and NTAD are specific factors contributing to the development of an ADHD phenotype with increased hyperactivity/impulsivity that is maintained throughout adulthood.
Collapse
|