1
|
Bodnar RJ, Castillo A, Carata I, Bochner Y, Sarker J, Rayman N, Narine S, Pines R, Limbu B, Sclafani A. Role of glutamatergic signaling in the acquisition and expression of learned sugar preferences in C57BL/6 mice. Physiol Behav 2025; 290:114748. [PMID: 39547434 DOI: 10.1016/j.physbeh.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
C57BL/6 (B6) mice learn to prefer glucose or sucrose to initially isopreferred or even more preferred nonnutritive sweeteners due to the postoral appetite stimulating (appetition) actions of glucose. Recent evidence indicates that specific duodenal neuropod cells transmit the glucose appetition signal to the brain via glutamatergic synaptic connections with vagal afferents. The present study found that intraperitoneal pretreatment with a glutamatergic receptor antagonist cocktail (kynurenic acid (KA)/D-2-amino-3-phosphonopentanoic acid (AP3)) in B6 mice did not block the expression of their learned preference for 8% glucose solution over an initially-preferred 0.1% sucralose + 0.1% saccharin solution. However, acquisition of the glucose preference was blocked by drug treatment during 1-h training sessions with the two sweeteners. Systemic KA/AP3 injections also did not block the expression of the learned preference for a 10.6% sucrose solution over a 0.6% sucralose solution. Drug effects on the acquisition of the sucrose preference were not determined because sucrose, unlike glucose conditioning, required 24-h training trials. The findings that the 1-h training regimen conditioned 8% glucose, but not 10.6% sucrose, preferences suggest that glucose has more potent appetition actions. This was confirmed by the finding that B6 mice learned to prefer 10.6% glucose to 10.6% sucrose after 1-h or 24-h training despite an initial strong sucrose preference. This action can be explained by 10.6% sucrose's digestion in the gut to glucose and fructose with only glucose activating the gut-brain appetition pathway.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA; Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Alexander Castillo
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Ion Carata
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Yerachmiel Bochner
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Joymin Sarker
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Nareesa Rayman
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Shania Narine
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Rachel Pines
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Brian Limbu
- Department of Psychology, Queens College, City University of New York, Queens, NY, USA
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Iskhakova J, Mustac T, Yuabov A, Macanian J, Israel E, Dohnalova P, Iskhakov B, Lulu EB, Aminov S, Fazylov D, Bodnar RJ. Acquisition and expression of fat conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutr Neurosci 2020; 25:137-145. [PMID: 32050863 DOI: 10.1080/1028415x.2020.1724706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 μg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 μg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.
Collapse
Affiliation(s)
- Julia Iskhakova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Tatjana Mustac
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Asnat Yuabov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Jason Macanian
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Emanuel Israel
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Eden Ben Lulu
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Sonya Aminov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - David Fazylov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
3
|
Fazilov G, Shenouda M, Iskhakov B, Buras A, Bhattacharjee D, Dohnalova P, Iskhakova J, Bourie F, Bodnar RJ. Acquisition and expression of sucrose conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutr Neurosci 2018; 23:672-678. [PMID: 30465483 DOI: 10.1080/1028415x.2018.1544333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study of inbred mouse strains is a useful animal model to assess differences in ingestive behavior responses, including conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice display differential sensitivity to dopamine (DA) D1, opioid and muscarinic cholinergic receptor antagonism of sucrose or saccharin intake as well as to muscarinic cholinergic antagonism of acquisition (learning) of sucrose-CFP. Given that DA D1, opioid and N-methyl-D-aspartate (NMDA) receptor antagonists differentially alter sucrose-CFP in BALB/c and SWR inbred mice, the present study examined whether systemic administration of naltrexone, SCH23390 or MK-801 altered acquisition and expression of sucrose-CFP in C57BL/6 mice. In acquisition experiments, male food-restricted C57BL/6 mice were treated with vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) 30 min prior to each of ten daily sessions in which they alternately consumed a flavored (CS+, e.g. cherry) 16% sucrose solution and a differently-flavored (CS-, e.g. grape) 0.05% saccharin solution followed by six two-bottle CS choice tests mixed in 0.2% saccharin without injections. SCH23390 and MK-801, but not naltrexone eliminated sucrose-CFP acquisition in food-restricted C57BL/6 mice. In expression experiments, food-restricted C57BL/6 mice underwent the ten training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg). SCH23390 more effectively reduced the magnitude of sucrose-CFP expression than naltrexone or MK-801 in food-restricted C57BL/6 mice. Thus, dopamine D1 and NMDA receptor signaling is essential for learning of sucrose-CFP in C57BL/6 mice.
Collapse
Affiliation(s)
- Gabriela Fazilov
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Merna Shenouda
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Debjeet Bhattacharjee
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Julia Iskhakova
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Faye Bourie
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.,CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
4
|
Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behav Brain Res 2018; 348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
|
5
|
Iskhakov B, Bourie F, Shenouda M, Fazilov G, Buras A, Bhattacharjee D, Dohnalova P, Iskhakova J, Bodnar RJ. Murine genetic variance in muscarinic cholinergic receptor antagonism of acquisition and expression of sucrose-conditioned flavor preferences in three inbred mouse strains. Pharmacol Biochem Behav 2018; 172:1-8. [PMID: 29969600 DOI: 10.1016/j.pbb.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Conditioned flavor preferences (CFP) are elicited by sucrose relative to saccharin in inbred mice with both the robustness of the preferences and sensitivity to pharmacological receptor antagonists sensitive to genetic variance. Dopamine, opioid and N-methyl-d-aspartate receptor antagonists differentially interfere with the acquisition (learning) and expression (maintenance) of sucrose-CFP in BALB/c and SWR inbred mice. Further, the muscarinic cholinergic receptor antagonist, scopolamine (SCOP) more potently reduces both sucrose and saccharin intake in BALB/c and C57BL/6 relative to SWR inbred mice. The present study examined whether SCOP altered the expression and acquisition of sucrose-CFP in BALB/c, C57BL/6 and SWR mice. In expression experiments, food-restricted mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 16% sucrose solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.05% saccharin solution. Two-bottle CS choice tests with the two flavors mixed in 0.2% saccharin solutions occurred following vehicle or SCOP at doses of 1 or 5 mg/kg. SCOP significantly reduced the magnitude of the expression of sucrose-CFP in BALB/c, but not either C57BL/6 or SWR mice. In acquisition experiments, separate groups of BALB/c, C57BL/6 and SWR mice were treated prior to acquisition training sessions with vehicle or 2.5 or 5 mg/kg SCOP doses that was followed by six two-bottle CS choice tests without injections. SCOP dose-dependently reduced (1 mg/kg) and eliminated (2.5 mg/kg) the acquisition of sucrose-CFP in BALB/c mice, and reduced the magnitude of acquisition of sucrose-CFP in SWR mice. In contrast, neither SCOP dose affected the acquisition of sucrose-CFP in C57BL/6 mice. Thus, muscarinic cholinergic receptor signaling is essential for the learning of sucrose-CFP in BALB/c mice, to a lesser degree in SWR mice, but not in C57BL/6 mice. Murine genetic variance differentially modulates muscarinic cholinergic receptor control of sweet intake per se relative to learned conditioned flavor preferences of sweets.
Collapse
Affiliation(s)
- Ben Iskhakov
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Faye Bourie
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Merna Shenouda
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Gabriela Fazilov
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | | | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Julia Iskhakova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, New York, NY, USA; CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
6
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
7
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|