1
|
Redell JB, Maynard ME, Hylin MJ, Hood KN, Sedlock A, Maric D, Zhao J, Moore AN, Roysam B, Pati S, Dash PK. A Combination of Low Doses of Lithium and Valproate Improves Cognitive Outcomes after Mild Traumatic Brain Injury. J Neurotrauma 2024. [PMID: 39463282 DOI: 10.1089/neu.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalence of mild traumatic brain injury (mTBI) is high compared with moderate and severe TBI, comprising almost 80% of all brain injuries. mTBI activates a complex cascade of biochemical, molecular, structural, and pathological changes that can result in neurological and cognitive impairments. These impairments can manifest even in the absence of overt brain damage. Given the complexity of changes triggered by mTBI, a combination of drugs that target multiple TBI-activated cascades may be required to improve mTBI outcomes. It has been previously demonstrated that cotreatment with the U.S. Food and Drug Administration (FDA)-approved drugs lithium plus valproate (Li + VPA) for 3 weeks after a moderate-to-severe controlled cortical impact injury reduced cortical tissue loss and improved motor function. Since both lithium and valproate can exhibit toxicity at high doses, it would be beneficial to determine if this combination treatment is effective when administered at low doses and for a shorter duration, and if it can improve cognitive function, after a mild diffuse TBI. In the present study, we tested if the combination of low doses of lithium (1 mEq/kg or 0.5 mEq/kg) plus valproate (20 mg/kg) administered for 3 days after a mild fluid percussion injury can improve hippocampal-dependent learning and memory. Our data show that the combination of low-dose Li + VPA improved spatial learning and memory, effects not seen when either drug was administered alone. In addition, postinjury Li + VPA treatment improved recognition memory and sociability and reduced fear generalization. Postinjury Li + VPA also reduced the number of anti-ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia counted using a convolutional neural network, indicating a reduction in neuroinflammation. These findings indicate that low-dose Li + VPA administered acutely after mTBI may have translational utility to reduce pathology and improve cognitive function.
Collapse
Affiliation(s)
- John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Shibani Pati
- Departments of Pathology and Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Rock EM, Limebeer CL, Smoum R, Mechoulam R, Parker LA. Evaluation of Sex Differences in the Potential of Δ 9-Tetrahydrocannabinol, Cannabidiol, Cannabidiolic Acid, and Oleoyl Alanine to Reduce Nausea-Induced Conditioned Gaping Reactions in Sprague-Dawley Rats. Cannabis Cannabinoid Res 2023; 8:1060-1068. [PMID: 35984924 DOI: 10.1089/can.2022.0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Cancer patients report nausea as a side effect of their chemotherapy treatment. Using the pre-clinical rodent model of acute nausea-lithium chloride (LiCl)-induced conditioned gaping-our group has demonstrated that exogenous cannabinoids may have antinausea potential. Materials and Methods: With the goal of evaluating the role of sex as a factor in pre-clinical research, we first compared the conditioned gaping reactions produced by varying doses of LiCl in male and female rats using the taste reactivity test (Experiment 1). Results: LiCl produced dose-dependent conditioned gaping similarly in male and female rats with the highest dose (127.2 mg/kg) producing robust conditioned gaping, with this dose used in subsequent experiments. Next, we examined the antinausea potential of THC (Experiment 2), CBD (Experiment 3), cannabidiolic acid (CBDA; Experiment 4) and oleoyl alanine (OlAla; Experiment 5) in both male and female rats. THC, CBD, CBDA, and OlAla dose dependently reduced conditioned gaping in both male and female rats in a similar manner. Conclusions: These results suggest that cannabinoids may be equally effective in treating nausea in both males and females.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
İlhan ÇF, Urcelay GP, Kışlal S. Genetic and environmental influences on one-trial conditioned context aversion in mice. GENES, BRAIN, AND BEHAVIOR 2023:e12857. [PMID: 37365873 PMCID: PMC10393421 DOI: 10.1111/gbb.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Anticipatory nausea (AN) is caused by an association between contextual cues and the experience of nausea (the side effects of chemotherapy or radiation treatment) and it develops predominantly in female patients undergoing chemotherapy. Preclinical studies in rodents show that the administration of an illness-inducing agent in the presence of novel contextual cues can cause conditioned context aversion (CCA) and this has been proposed to model AN. The literature also suggests that brief pre-exposure to a novel context prior to shock delivery is critical in the development of contextual fear conditioning in rodents (a phenomenon known as Immediate Shock Deficit), but this has not been assessed in CCA. The aim of present study was to develop a CCA paradigm to assess this in outbred (CD1) and inbred (C57BL/6J) mice and evaluate potential sex differences. The results revealed that a single conditioning trial in which a distinctive context was paired with LiCl-induced illness was sufficient to elicit a conditioned response in both female and male CD1 outbred mice, but not in C57BL/6J inbred mice. In addition, CCA was facilitated when animals had prior experience with the context. Finally, outbred female mice showed longer and more robust retention of CCA than male mice, which parallels clinical findings. The results indicate the importance of using CD1 outbred mice as an animal model of AN as well as examining sex differences in the CCA paradigm. Similar findings in humans encourage the future use of this novel CCA preclinical mouse model.
Collapse
Affiliation(s)
- Çınar Furkan İlhan
- Department of Psychology, Middle East Technical University, Ankara, Turkey
| | | | - Sezen Kışlal
- Department of Psychology, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Bernanke A, Sette S, Hernandez N, Zimmerman S, Murphy J, Francis R, Reavis Z, Kuhn C. Male and female rats exhibit comparable gaping behavior but activate brain regions differently during expression of conditioned nausea. Behav Pharmacol 2022; 33:291-300. [PMID: 35621171 PMCID: PMC9354039 DOI: 10.1097/fbp.0000000000000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty-five to fifty percent of patients undergoing chemotherapy will develop anticipatory nausea and vomiting (ANV), in which symptoms occur in anticipation of treatment. ANV is triggered by environmental cues and shows little response to traditional antiemetic therapy, suggesting that unique neural pathways mediate this response. Understanding the underlying neural mechanisms of this disorder is critical to the development of novel therapeutic interventions. The purpose of the present study was to identify brain areas activated during ANV and characterize sex differences in both the behavior and the brain areas activated during ANV. We used a rat model of ANV by pairing a novel context with the emetic drug lithium chloride (LiCl) to produce conditioned nausea behaviors in the LiCl-paired environment. We quantitated gaping, an analog of human vomiting, after acute or repeated LiCl in a unique environment. To identify brain regions associated with gaping, we measured c-fos activation by immunochemical staining after these same treatments. We found that acute LiCl activated multiple brain regions including the supraoptic nucleus of the hypothalamus, central nucleus of the amygdala, nucleus of the solitary tract and area postrema, none of which were activated during ANV. ANV activated c-fos expression in the frontal cortex, insula and paraventricular nucleus of the hypothalamus of males but not females. These data suggest that therapies such as ondansetron which target the area postrema are not effective in ANV because it is not activated during the ANV response. Further studies aimed at characterizing the neural circuits and cell types that are activated in the conditioned nausea response will help identify novel therapeutic targets for the treatment of this condition, improving both quality of life and outcomes for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rubio Arzola P, Shansky RM. Considering Organismal Physiology in Laboratory Studies of Rodent Behavior. Annu Rev Neurosci 2022; 45:387-402. [PMID: 35395164 DOI: 10.1146/annurev-neuro-111020-085500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Rebecca M Shansky
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Kavaliers M, Ossenkopp KP, Tyson CD, Bishnoi IR, Choleris E. Social factors and the neurobiology of pathogen avoidance. Biol Lett 2022; 18:20210371. [PMID: 35193366 PMCID: PMC8864371 DOI: 10.1098/rsbl.2021.0371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Cashmeira-Dove Tyson
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Indra R. Bishnoi
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
7
|
Doobay M, Cross-Mellor SK, Wah DTO, Kavaliers M, Ossenkopp KP. Toxin-induced aversive context conditioning: Assessing active aversive behaviors conditioned to the context of an automated activity monitor. Physiol Behav 2021; 240:113559. [PMID: 34416259 DOI: 10.1016/j.physbeh.2021.113559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
Lithium chloride (LiCl) is an emetic drug that has been used to create animal models of anticipatory nausea and conditioned place aversion. In this study we examined escape behaviours from a context in which rats experienced the aversive effects of LiCl treatments. The experiment had two phases: acquisition of context conditioning, which consisted of pairing a distinct context with the pharmacological effects of a moderate dose of the toxin LiCl, and extinction of context conditioning, which consisted of placement in the distinct context in a drug free state. During context conditioning, 16 adult male Long-Evans rats were injected intraperitoneally with 96 mg/kg lithium chloride (LiCl; n = 8) or 0.9% saline (NaCl; n = 8) and placed individually in an automated locomotor activity apparatus for 30 min every other day for 4 days. During the extinction phase, rats were placed in the apparatus for 30 min every other day without injections during a 4 day extinction phase. A significant Drug x Trial interaction was found for the time spent in vertical position in the open field apparatus during trials 1-3 of the extinction phase. The LiCl treated rats exhibited significantly increased rearing behavior, relative to the control rats, indicative of conditioned aversion. The results of this study suggest that escape behavior (vertical activity) occurs in rats experiencing the aversive conditioned effects of LiCl in a distinct context. In the context of current theoretical accounts, the LiCl-conditioned increase in apparent escape behaviors can be considered a reflection of anticipatory nausea.
Collapse
Affiliation(s)
- Minakshi Doobay
- Department of Psychology, University of Western Ontario Canada
| | | | - Deanne T O Wah
- Department of Psychology, University of Western Ontario Canada
| | - Martin Kavaliers
- Department of Psychology, University of Western Ontario Canada; Graduate Program in Neuroscience, University of Western Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario Canada; Graduate Program in Neuroscience, University of Western Ontario Canada.
| |
Collapse
|
8
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
9
|
Kavaliers M, Ossenkopp KP, Choleris E. Social neuroscience of disgust. GENES BRAIN AND BEHAVIOR 2018; 18:e12508. [DOI: 10.1111/gbb.12508] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| |
Collapse
|