1
|
Xie J, Zheng Y, Li G, Zhang W, Meng F, Fan X, Sun X, Zhang Y, Wang M, Chen Q, Wang S, Jiang H. Combined Physiological and Transcriptomic Analysis Reveals Key Regulatory Networks and Potential Hub Genes Controlling Chilling Tolerance During Soybean Germination. PLANT DIRECT 2024; 8:e70027. [PMID: 39691551 PMCID: PMC11651713 DOI: 10.1002/pld3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/30/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Chilling is an important limiting factor for seed germination of soybean (Glycine max [L.] Merr.). To reveal the regulatory mechanism of chilling tolerance during the soybean germination stage, based on previous studies, the chilling tolerance line R48 and chilling sensitive line R89 in chromosome segment substitution lines were selected for physiological index determination and transcriptome sequencing. It was found that reactive oxygen species (ROS) scavenging system related enzymes, ROS, and osmotic regulators were significantly different between the two lines. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment were performed on the differentially expressed genes obtained by transcriptome sequencing. It was found that terms or pathways related to flavonoids, unsaturated fatty acids, and abscisic acid were highly enriched. In addition, weighted gene coexpression network analysis (WGCNA) method was used to analyze the physiological index data and transcriptome sequencing data. Four main coexpression modules significantly related to physiological indicators were obtained, and the hub genes in each module were screened according to eigengene-based connectivity value. Haplotype analysis of important candidate genes using soybean germplasm resources showed that there were significant differences in germination indexes between different major haplotypes of Glyma.17G163200. Based on the results of enrichment analysis and WGCNA, the regulation model of low temperature tolerance during soybean germination was preliminarily drawn. This study will provide theoretical guidance for analyzing the molecular regulation mechanism of cold tolerance in soybean germination stage.
Collapse
Affiliation(s)
- Jianguo Xie
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
- Northeast Agricultural UniversityHarbinHeilongjiangChina
| | - Guang Li
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Wei Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Fanfan Meng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Xingmiao Sun
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Yunfeng Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Mingliang Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Qingshan Chen
- Northeast Agricultural UniversityHarbinHeilongjiangChina
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| |
Collapse
|
2
|
Kawada Y, Hayashi E, Katsuragi Y, Imamura-Jinda A, Hirokawa T, Mizukami T, Hayashi M. Identification of Chemicals That Abrogate Folate-Dependent Inhibition of Starch Accumulation in Non-Photosynthetic Plastids of Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1551-1562. [PMID: 37801291 DOI: 10.1093/pcp/pcad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Folate, also known as vitamin B9, is an essential cofactor for a variety of enzymes and plays a crucial role in many biological processes. We previously reported that plastidial folate prevents starch biosynthesis triggered by the influx of sugar into non-starch-accumulating plastids, such as etioplasts, and chloroplasts under darkness; hence the loss of plastidial folate induces the accumulation of starch in plastids. To understand the molecular mechanism underlying this phenomenon, we screened our in-house chemical library and searched their derivatives to identify chemicals capable of inducing starch accumulation in etioplasts. The results revealed four chemicals, compounds #120 and #375 and their derivatives, compounds #120d and #375d, respectively. The derivative compounds induced starch accumulation in etioplasts and suppressed hypocotyl elongation in dark-grown Arabidopsis seedlings. They also inhibited the post-germinative growth of seedlings under illumination. All four chemicals contained the sulfonamide group as a consensus structure. The sulfonamide group is also found in sulfa drugs, which exhibit antifolate activity, and in sulfonylurea herbicides. Further analyses revealed that compound #375d induces starch accumulation by inhibiting folate biosynthesis. By contrast, compound #120d neither inhibited folate biosynthesis nor exhibited the herbicide activity. Protein and metabolite analyses suggest that compound #120d abrogates folate-dependent inhibition of starch accumulation in etioplasts by enhancing starch biosynthesis.
Collapse
Affiliation(s)
- Yoshihiro Kawada
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
| | - Eriko Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
| | - Yuya Katsuragi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
| | - Aya Imamura-Jinda
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, Tsukuba University, 1-1-1 Tenmondai, Tsukuba, Ibaragi, 305-8577 Japan
| | - Tamio Mizukami
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
- Frontier Pharma, 1281-8 Tamura, Nagahama, Shiga, 526-0829 Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 526-0829 Japan
| |
Collapse
|
3
|
Corpas FJ, Río LAD, Palma JM. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E37. [PMID: 30744153 PMCID: PMC6409570 DOI: 10.3390/plants8020037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical endogenously generated in plant cells. Peroxisomes are cell organelles characterized by an active metabolism of reactive oxygen species (ROS) and are also one of the main cellular sites of NO production in higher plants. In this mini-review, an updated and comprehensive overview is presented of the evidence available demonstrating that plant peroxisomes have the capacity to generate NO, and how this molecule and its derived products, peroxynitrite (ONOO⁻) and S-nitrosoglutathione (GSNO), can modulate the ROS metabolism of peroxisomes, mainly throughout protein posttranslational modifications (PTMs), including S-nitrosation and tyrosine nitration. Several peroxisomal antioxidant enzymes, such as catalase (CAT), copper-zinc superoxide dismutase (CuZnSOD), and monodehydroascorbate reductase (MDAR), have been demonstrated to be targets of NO-mediated PTMs. Accordingly, plant peroxisomes can be considered as a good example of the interconnection existing between ROS and reactive nitrogen species (RNS), where NO exerts a regulatory function of ROS metabolism acting upstream of H₂O₂.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
4
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135, 10.3389/fphys.2018.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 06/26/2024]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
Affiliation(s)
| | | | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
|
6
|
Hayashi M, Tanaka M, Yamamoto S, Nakagawa T, Kanai M, Anegawa A, Ohnishi M, Mimura T, Nishimura M. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:1328-1338. [PMID: 28586467 PMCID: PMC5921527 DOI: 10.1093/pcp/pcx076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/16/2017] [Indexed: 05/22/2023]
Abstract
Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
- Corresponding author: E-mail,: ; Fax, +81-749-64-8101
| | - Mina Tanaka
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Saki Yamamoto
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Taro Nakagawa
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, 657-8501, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
7
|
Corpas FJ, Barroso JB. Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O 2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 2016; 68:103-110. [PMID: 28039072 DOI: 10.1016/j.niox.2016.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Lead (Pb) contamination has a toxic effect on plant metabolisms, leading to a decrease in biomass production. The free radical nitric oxide (NO) is involved in the mechanism of response to a wide range of abiotic stresses. However, little is known about the interplay between Pb-induced stress and NO metabolism. Peroxisomes are sub-cellular compartments involved in multiple cellular metabolic pathways which are characterized by an active nitro-oxidative metabolism. Thus, Arabidopsis thaliana mutants expressing cyan fluorescent protein (CFP) through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo by confocal laser scanning microscopy (CLSM) combined with fluorescent probes for nitric oxide (NO), superoxide anion (O2·-) and peroxynitrite (ONOO-), were used to evaluate the potential involvement of these organelles in the mechanism of response to 150 μM lead-induced stress. Both NO and O2·- radicals, and consequently ONOO-, were overproduced under Pb-stress. Additionally, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase (CAT) and two photorespiration enzymes, such as glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), show that, under Pb-stress, only the catalase was negatively affected, while the two photorespiration enzymes remained unaffected. These results corroborate the involvement of plant peroxisomal metabolisms in the mechanism of response to lead contamination and highlight the importance of the peroxisomal NO metabolism.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain
| |
Collapse
|
8
|
Del Río LA, López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:1364-1376. [PMID: 27081099 DOI: 10.1093/pcp/pcw076] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/07/2016] [Indexed: 05/19/2023]
Abstract
In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2·- ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.
Collapse
Affiliation(s)
- Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| | - Eduardo López-Huertas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419, E-18080 Granada, Spain
| |
Collapse
|
9
|
Jaipargas EA, Mathur N, Bou Daher F, Wasteneys GO, Mathur J. High Light Intensity Leads to Increased Peroxule-Mitochondria Interactions in Plants. Front Cell Dev Biol 2016; 4:6. [PMID: 26870732 PMCID: PMC4740372 DOI: 10.3389/fcell.2016.00006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022] Open
Abstract
Peroxules are thin protrusions from spherical peroxisomes produced under low levels of reactive oxygen species (ROS) stress. Whereas, stress mitigation favors peroxule retraction, prolongation of the ROS stress leads to the elongation of the peroxisome into a tubular form. Subsequently, the elongated form becomes constricted through the binding of proteins such as dynamin related proteins 3A and 3B and eventually undergoes fission to increase the peroxisomal population within a cell. The events that occur in the short time window between peroxule initiation and the tubulation of the entire peroxisome have not been observed in living plant cells. Here, using fluorescent protein aided live-imaging, we show that peroxules are formed after only 4 min of high light (HL) irradiation during which there is a perceptible increase in the cytosolic levels of hydrogen peroxide. Using a stable, double transgenic line of Arabidopsis thaliana expressing a peroxisome targeted YFP and a mitochondrial targeted GFP probe, we observed sustained interactions between peroxules and small, spherical mitochondria. Further, it was observed that the frequency of HL-induced interactions between peroxules and mitochondria increased in the Arabidopsis anisotropy1 mutant that has reduced cell wall crystallinity and where we show accumulation of higher H2O2 levels than wild type plants. Our observations suggest a testable model whereby peroxules act as interaction platforms for ROS-distressed mitochondria that may release membrane proteins and fission factors. These proteins might thus become easily available to peroxisomes and facilitate their proliferation for enhancing the ROS-combating capability of a plant cell.
Collapse
Affiliation(s)
- Erica-Ashley Jaipargas
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Firas Bou Daher
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
10
|
Tello J, Torres-Pérez R, Grimplet J, Ibáñez J. Association analysis of grapevine bunch traits using a comprehensive approach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:227-42. [PMID: 26536891 DOI: 10.1007/s00122-015-2623-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/17/2015] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE A set of SNP markers associated to bunch compactness and related traits were identified in grapevine. ABSTRACT Bunch compactness plays an important role in the sanitary status and perceived quality of table and wine grapes, being influenced by cultural practices and by environmental and genetic factors, which are mostly unknown. In this work, we took advantage of genetic, genomic and bioinformatic advances to analyze part of its molecular basis through a combination of transcriptomic and association analyses. Results from different transcriptomic comparisons between loose and compact grapevine clones were analyzed to select a set of candidate genes likely involved in the observed variation for bunch compactness. Up to 183 genes were sequenced in a grapevine collection, and 7032 single nucleotide polymorphisms (SNPs) were detected in more than 100 varieties with a frequency of the minor allele over 5%. They were used to test their association in three consecutive seasons with bunch compactness and two of its most influencing factors: total berry number and length of the first ramification of the rachis. Only one SNP was associated with berry number in two seasons, suggesting the high sensitiveness of this trait to seasonal environmental changes. On the other hand, we found a set of SNPs associated with both the first ramification length and bunch compactness in various seasons, in several genes which had not previously related to bunch compactness or bunch compactness-related traits. They are proposed as interesting candidates for further functional analyses aimed to verify the results obtained in this work, as a previous step to their inclusion in marker-assisted selection strategies.
Collapse
Affiliation(s)
- Javier Tello
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Rafael Torres-Pérez
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Javier Ibáñez
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain.
| |
Collapse
|
11
|
Fernández-Fernández ÁD, Corpas FJ. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase. SCIENTIFICA 2016; 2016:3482760. [PMID: 27034898 PMCID: PMC4789532 DOI: 10.1155/2016/3482760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/08/2016] [Indexed: 05/21/2023]
Abstract
NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.
Collapse
Affiliation(s)
- Álvaro D. Fernández-Fernández
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
- *Francisco J. Corpas:
| |
Collapse
|
12
|
Tiew TWY, Sheahan MB, Rose RJ. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:658. [PMID: 26379686 PMCID: PMC4549554 DOI: 10.3389/fpls.2015.00658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction.
Collapse
Affiliation(s)
| | | | - Ray J. Rose
- *Correspondence: Ray J. Rose, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australi,
| |
Collapse
|
13
|
Voitsekhovskaja OV, Schiermeyer A, Reumann S. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. FRONTIERS IN PLANT SCIENCE 2014; 5:629. [PMID: 25477890 PMCID: PMC4235271 DOI: 10.3389/fpls.2014.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/23/2014] [Indexed: 05/07/2023]
Abstract
Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Olga V. Voitsekhovskaja
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität GöttingenGöttingen, Germany
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Plant Ecological PhysiologySaint Petersburg, Russia
| | - Andreas Schiermeyer
- Abteilung Pflanzenbiotechnologie, Fraunhofer-Institut für Molekularbiologie und Angewandte OekologieAachen, Germany
| | - Sigrun Reumann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität GöttingenGöttingen, Germany
- Institute for Mathematics and Natural Sciences, Faculty of Science and Technology, Centre for Organelle Research, University of StavangerStavanger, Norway
- Faculty of Mathematics, Informatics and Natural Sciences, Biocentre Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
14
|
Reunov AV. Plant peroxisomes: The role in metabolism of reactive oxygen species and the processes they mediate. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414040082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L, Kang Z. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 76:7-16. [PMID: 24448320 DOI: 10.1016/j.plaphy.2013.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/20/2013] [Indexed: 05/01/2023]
Abstract
Reactive oxygen species (ROS) in plants are induced in various cellular compartments upon pathogen infection and act as an early signal during plant-pathogen interactions. Monodehydroascorbate reductase (MDHAR) is involved in plant disease resistance through the regulation of the ROS level via the ascorbate-glutathione (AsA-GSH) cycle. In this study, TaMDHAR4 was firstly isolated from wheat cultivar Suwon 11, and this protein exhibits high similarity to MDHAR proteins from other plant species. Bioinformatics analyses indicated that TaMDHAR4 contains typical structural features, such as mPTS-like sequences in the C-terminal extension and trans-membrane domain followed by five basic arginine residues (-RKRRR), which predicted that this protein may be localized in the peroxisome. qRT-PCR analyses demonstrated that TaMDHAR4 could be induced by various exogenous hormones, such as ABA, MeJA, and ETH. TaMDHAR4 is sharply down-regulated at 12 and 18 hpi only in wheat leaves challenged with Puccinia striiformis f. sp. tritici (Pst) race CYR23 and induced at 48 hpi with both Pst races CYR23 and CYR31. SOD and APX injection analyses demonstrated that TaMDHAR4 may be involved in the interaction between wheat and Pst through the regulation of its expression. Moreover, the knockdown of TaMDHAR4 through virus-induced gene silencing (VIGS) enhanced the wheat resistance to Pst by inhibiting sporulation in the compatible interaction. Histological observations also demonstrated that silenced wheat resulted in an increased proportion of necrotic area at the infection sites and suppressed Pst hypha elongation. The study provided novel insights into the molecular functions of TaMDHAR4 during plant-pathogen interactions.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyuan Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Reumann S, Buchwald D, Lingner T. PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins. FRONTIERS IN PLANT SCIENCE 2012; 3:194. [PMID: 22969783 PMCID: PMC3427985 DOI: 10.3389/fpls.2012.00194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/06/2012] [Indexed: 05/04/2023]
Abstract
Prediction of subcellular protein localization is essential to correctly assign unknown proteins to cell organelle-specific protein networks and to ultimately determine protein function. For metazoa, several computational approaches have been developed in the past decade to predict peroxisomal proteins carrying the peroxisome targeting signal type 1 (PTS1). However, plant-specific PTS1 protein prediction methods have been lacking up to now, and pre-existing methods generally were incapable of correctly predicting low-abundance plant proteins possessing non-canonical PTS1 patterns. Recently, we presented a machine learning approach that is able to predict PTS1 proteins for higher plants (spermatophytes) with high accuracy and which can correctly identify unknown targeting patterns, i.e., novel PTS1 tripeptides and tripeptide residues. Here we describe the first plant-specific web server PredPlantPTS1 for the prediction of plant PTS1 proteins using the above-mentioned underlying models. The server allows the submission of protein sequences from diverse spermatophytes and also performs well for mosses and algae. The easy-to-use web interface provides detailed output in terms of (i) the peroxisomal targeting probability of the given sequence, (ii) information whether a particular non-canonical PTS1 tripeptide has already been experimentally verified, and (iii) the prediction scores for the single C-terminal 14 amino acid residues. The latter allows identification of predicted residues that inhibit peroxisome targeting and which can be optimized using site-directed mutagenesis to raise the peroxisome targeting efficiency. The prediction server will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants. PredPlantPTS1 is freely accessible at ppp.gobics.de.
Collapse
Affiliation(s)
- Sigrun Reumann
- Center for Organelle Research, University of StavangerStavanger, Norway
| | - Daniela Buchwald
- Department of Bioinformatics, University of GöttingenGöttingen, Germany
| | - Thomas Lingner
- Department of Bioinformatics, University of GöttingenGöttingen, Germany
| |
Collapse
|
18
|
Chowdhary G, Kataya ARA, Lingner T, Reumann S. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC PLANT BIOLOGY 2012; 12:142. [PMID: 22882975 PMCID: PMC3487989 DOI: 10.1186/1471-2229-12-142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/13/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND High-accuracy prediction tools are essential in the post-genomic era to define organellar proteomes in their full complexity. We recently applied a discriminative machine learning approach to predict plant proteins carrying peroxisome targeting signals (PTS) type 1 from genome sequences. For Arabidopsis thaliana 392 gene models were predicted to be peroxisome-targeted. The predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. RESULTS In this study, we experimentally validated the predictions in greater depth by focusing on the most challenging Arabidopsis proteins with unknown non-canonical PTS1 tripeptides and prediction scores close to the threshold. By in vivo subcellular targeting analysis, three novel PTS1 tripeptides (QRL>, SQM>, and SDL>) and two novel tripeptide residues (Q at position -3 and D at pos. -2) were identified. To understand why, among many Arabidopsis proteins carrying the same C-terminal tripeptides, these proteins were specifically predicted as peroxisomal, the residues upstream of the PTS1 tripeptide were computationally permuted and the changes in prediction scores were analyzed. The newly identified Arabidopsis proteins were found to contain four to five amino acid residues of high predicted targeting enhancing properties at position -4 to -12 in front of the non-canonical PTS1 tripeptide. The identity of the predicted targeting enhancing residues was unexpectedly diverse, comprising besides basic residues also proline, hydroxylated (Ser, Thr), hydrophobic (Ala, Val), and even acidic residues. CONCLUSIONS Our computational and experimental analyses demonstrate that the plant PTS1 tripeptide motif is more diverse than previously thought, including an increasing number of non-canonical sequences and allowed residues. Specific targeting enhancing elements can be predicted for particular sequences of interest and are far more diverse in amino acid composition and positioning than previously assumed. Machine learning methods become indispensable to predict which specific proteins, among numerous candidate proteins carrying the same non-canonical PTS1 tripeptide, contain sufficient enhancer elements in terms of number, positioning and total strength to cause peroxisome targeting.
Collapse
Affiliation(s)
- Gopal Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
- KIIT School of Biotechnology, Campus XI, KIIT University, Bhubaneswar, 751024, India
| | - Amr RA Kataya
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| | - Thomas Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077, Goettingen, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| |
Collapse
|
19
|
Zhang X, Jiang H, Wang YL, Zhang Z, Mao XQ, Chai RY, Qiu HP, Du XF, Wang JY, Sun GC. [Bioinformatic research of the family of PEX11, peroxisome proliferous factor in fungus]. YI CHUAN = HEREDITAS 2012; 34:635-46. [PMID: 22659436 DOI: 10.3724/sp.j.1005.2012.00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The family members of PEX11 are key factors involved in regulation of peroxisome proliferation. Sixty-six PEX11p candidates of PEX11 gene family from 26 representative fungal species were obtained and analyzed by bioinformatic strategies. In most filamentous fungi, 2 or 3 potential PEX11ps were found, in contrast with 1 or 2 in yeast species. Compared with other fungal species, the Ascomycetes tend to have more PEX11ps, and even 5 in several individuals. The data of phylogenetic analysis and protein structure indicated that all of the PEX11ps were divided into 3 groups: I, II, and III. The members of group I and group III existed in most species, while those in group II were found only in Pezizomycotina. By MEME analysis, 5-6 conserved motifs were found in each PEX11ps. Among them,motif 8 in C-terminal had the most conservation, indicating that this motif probably plays a key role in maintaining the proper function of PEX11p.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reumann S. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics. Proteomics 2011; 11:1764-79. [PMID: 21472859 DOI: 10.1002/pmic.201000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 12/23/2022]
Abstract
In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
22
|
Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, Siemsen T, Morgenstern B, Meinicke P, Reumann S. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. THE PLANT CELL 2011; 23:1556-72. [PMID: 21487095 PMCID: PMC3101550 DOI: 10.1105/tpc.111.084095] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/04/2011] [Accepted: 03/24/2011] [Indexed: 05/18/2023]
Abstract
In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.
Collapse
Affiliation(s)
- Thomas Lingner
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Amr R. Kataya
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Gerardo E. Antonicelli
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Aline Benichou
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Kjersti Nilssen
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Xiong-Yan Chen
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Tanja Siemsen
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Burkhard Morgenstern
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
| | - Peter Meinicke
- Georg-August University of Goettingen, Institute for Microbiology, Department of Bioinformatics, D-37077 Goettingen, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Georg-August-University of Goettingen, Department of Plant Biochemistry, D-37077 Goettingen, Germany
- Address correspondence to
| |
Collapse
|
23
|
del Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011; 506:1-11. [DOI: 10.1016/j.abb.2010.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022]
|
24
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
25
|
Zipor G, Brocard C, Gerst JE. Isolation of mRNAs encoding peroxisomal proteins from yeast using a combined cell fractionation and affinity purification procedure. Methods Mol Biol 2011; 714:323-33. [PMID: 21431750 DOI: 10.1007/978-1-61779-005-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Targeted mRNA localization to distinct subcellular sites occurs throughout the eukaryotes and presumably allows for the localized translation of proteins near their site of function. Specific mRNAs have been localized in cells using a variety of reliable methods, such as fluorescence in situ hybridization with labeled RNA probes, mRNA tagging using RNA aptamers and fluorescent proteins that recognize these aptamers, and quenched fluorescent RNA probes that become activated upon binding to mRNAs. However, fluorescence-based RNA localization studies can be strengthened when coupled with cell fractionation and membrane isolation techniques in order to identify mRNAs associated with specific organelles or other subcellular structures. Here we describe a novel method to isolate mRNAs associated with peroxisomes in the yeast, Saccharomyces cerevisiae. This method employs a combination of density gradient centrifugation and affinity purification to yield a highly enriched peroxisome fraction suitable for RNA isolation and reverse transcription-polymerase chain reaction detection of mRNAs bound to peroxisome membranes. The method is presented for the analysis of peroxisome-associated mRNAs; however it is applicable to studies on other subcellular compartments.
Collapse
Affiliation(s)
- Gadi Zipor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
26
|
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:909-30. [PMID: 20870416 DOI: 10.1016/j.plaphy.2010.08.016] [Citation(s) in RCA: 4595] [Impact Index Per Article: 306.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/28/2010] [Indexed: 05/18/2023]
Abstract
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
27
|
Interaction of the Aspergillus nidulans microtubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs. EUKARYOTIC CELL 2010; 9:795-805. [PMID: 20348383 DOI: 10.1128/ec.00058-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.
Collapse
|
28
|
Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010; 102:245-63. [PMID: 20146669 DOI: 10.1042/bc20090159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post-translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co-receptors in yeast) and the function of two peroxisome-associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.
Collapse
|
29
|
Huizinga DH, Denton R, Koehler KG, Tomasello A, Wood L, Sen SE, Crowell DN. Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. MOLECULAR PLANT 2010; 3:143-55. [PMID: 19969520 PMCID: PMC2807925 DOI: 10.1093/mp/ssp091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/22/2009] [Indexed: 05/21/2023]
Abstract
The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC lyase activity exhibit an enhanced response to ABA. However, the enzymological properties of the FCLY-encoded enzyme and its precise role in ABA signaling remain unclear. Here, we show that recombinant Arabidopsis FC lyase expressed in insect cells exhibits high selectivity for FC as a substrate and requires FAD and molecular oxygen for activity. Arabidopsis FC lyase is also shown to undergo post-translational N-glycosylation. FC, which is a competitive inhibitor of isoprenylcysteine methyltransferase (ICMT), accumulates in fcly mutants. Moreover, the enhanced response of fcly mutants to ABA is reversed by ICMT overexpression. These observations support the hypothesis that the ABA hypersensitive phenotype of fcly plants is the result of FC accumulation and inhibition of ICMT.
Collapse
Affiliation(s)
- David H. Huizinga
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Ryan Denton
- Department of Chemistry, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202, USA
| | - Kelly G. Koehler
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Ashley Tomasello
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Lyndsay Wood
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Stephanie E. Sen
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Dring N. Crowell
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID 83209, USA
- To whom correspondence should be addressed. E-mail , fax 208-282-4570, tel. 208-282-3171
| |
Collapse
|
30
|
Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. PLANT PHYSIOLOGY 2009; 151:2083-94. [PMID: 19783645 PMCID: PMC2785999 DOI: 10.1104/pp.109.146100] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/22/2009] [Indexed: 05/18/2023]
Abstract
Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mM NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO(-)) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain.
| | | | | | | | | |
Collapse
|
31
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
32
|
Aung K, Hu J. The Arabidopsis peroxisome division mutant pdd2 is defective in the DYNAMIN-RELATED PROTEIN3A (DRP3A) gene. PLANT SIGNALING & BEHAVIOR 2009; 57:146-59. [PMID: 19816122 DOI: 10.1111/j.1365-313x.2008.03677.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, the division of peroxisomes is mediated by several classes of proteins, including PEROXIN11 (PEX11), FISSION1 (FIS1) and DYNAMIN-RELATED PROTEIN3 (DRP3). DRP3A and DRP3B are two homologous dynamin-related proteins playing overlapping roles in the division of both peroxisomes and mitochondria, with DRP3A performing a stronger function than DRP3B in peroxisomal fission. Here, we report the identification and characterization of the peroxisome division defective 2 (pdd2) mutant, which was later proven to be another drp3A allele. The pdd2 mutant generates a truncated DRP3A protein and exhibits pale green and retarded growth phenotypes. Intriguingly, this mutant displays much stronger peroxisome division deficiency in root cells than in leaf mesophyll cells. Our data suggest that the partial GTPase effector domain retained in pdd2 may have contributed to the distinct mutant phenotype of this mutant.
Collapse
Affiliation(s)
- Kyaw Aung
- Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
33
|
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. PLANT PHYSIOLOGY 2009; 150:125-43. [PMID: 19329564 PMCID: PMC2675712 DOI: 10.1104/pp.109.137703] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/23/2009] [Indexed: 05/18/2023]
Abstract
Peroxisomes are metabolically diverse organelles with essential roles in plant development. The major protein constituents of plant peroxisomes are well characterized, whereas only a few low-abundance and regulatory proteins have been reported to date. We performed an in-depth proteome analysis of Arabidopsis (Arabidopsis thaliana) leaf peroxisomes using one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry. We detected 65 established plant peroxisomal proteins, 30 proteins whose association with Arabidopsis peroxisomes had been previously demonstrated only by proteomic data, and 55 putative novel proteins of peroxisomes. We subsequently tested the subcellular targeting of yellow fluorescent protein fusions for selected proteins and confirmed the peroxisomal localization for 12 proteins containing predicted peroxisome targeting signals type 1 or 2 (PTS1/2), three proteins carrying PTS-related peptides, and four proteins that lack conventional targeting signals. We thereby established the tripeptides SLM> and SKV> (where > indicates the stop codon) as new PTS1s and the nonapeptide RVx(5)HF as a putative new PTS2. The 19 peroxisomal proteins conclusively identified from this study potentially carry out novel metabolic and regulatory functions of peroxisomes. Thus, this study represents an important step toward defining the complete plant peroxisomal proteome.
Collapse
Affiliation(s)
- Sigrun Reumann
- Michigan State University-Department of Energy Plant Research Laboratory , Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, Del Río LA. Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1319-30. [PMID: 18538891 DOI: 10.1016/j.jplph.2008.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 05/26/2023]
Abstract
The presence and properties of the enzyme xanthine oxidoreductase (XOR) in peroxisomes from pea (Pisum sativum L.) leaves were studied using biochemical and immunological methods. The activity analysis showed that, in leaf peroxisomes, the superoxide-generating XOR form, xanthine oxidase (XOD), was predominant over the xanthine dehydrogenase form (XDH), with a XDH/XOD ratio of 0.5. However, in crude extracts of pea leaves, the XDH form was more abundant, with a XDH/XOD ratio of 1.6. The native molecular mass of the peroxisomal XOR determined by polyacrylamide gel electrophoresis was 290 kDa. Using western blot assays, we identified an immunoreactive band of 59 kDa that was not affected by the reducing reagent DTT or endogenous proteases. The analysis of pea leaves by electron microscopy immunogold labeling with affinity-purified antibodies against rat XOD confirmed that this enzyme was localized in the matrix of peroxisomes, as well as in chloroplasts and cytosol. In pea plants subjected to abiotic stress by cadmium, the activity of the peroxisomal XOR was reduced, whereas its protein level expression increased. The results confirmed that leaf peroxisomes contain XOR, and suggest that this peroxisomal metalloflavoprotein enzyme is involved in the mechanism of response of pea plants to abiotic stress by heavy metals.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Castillo MC, Sandalio LM, Del Río LA, León J. Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2008; 31:492-505. [PMID: 18194426 DOI: 10.1111/j.1365-3040.2008.01780.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant peroxisomes are multifunctional organelles that show plasticity in number, size, morphology, cellular location and metabolic functions. Many of these changes occur in response to environmental factors and are decisive for the development and defence of the plant. Among them, peroxisomal beta-oxidation-mediated synthesis of jasmonic acid (JA) is a key process in regulating development as well as wound- or pathogen-triggered defence responses. This work seeks for the connection between wound, JA and the proliferation of peroxisomes in Arabidopsis thaliana. The hypolipidemic drug clofibrate (CFB) induced the proliferation of peroxisomes and the expression of the beta-oxidation 3-ketoacyl-CoA thiolase 2 (KAT2) gene, coding for a key enzyme in the biosynthesis of JA, among other wound- and JA-responsive gene transcripts in Arabidopsis leaves. The CFB-activated expression of wound-responsive genes was not dependent on JA synthesis or perception and those responsive to JA required the function of the F-box protein COI1. In turn, wounding neither triggered peroxisome proliferation nor required peroxisome integrity to activate gene expression. Interestingly, cells from JA-treated leaves contained fewer but larger peroxisomes than cells from untreated leaves. The proliferation of peroxisomes, the synthesis of JA and the activation of wound-responsive genes by CFB, although functionally connected, were uncoupled in Arabidopsis.
Collapse
Affiliation(s)
- Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
36
|
Desai M, Hu J. Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b. PLANT PHYSIOLOGY 2008; 146:1117-27. [PMID: 18203870 PMCID: PMC2259046 DOI: 10.1104/pp.107.113555] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/10/2008] [Indexed: 05/18/2023]
Abstract
Peroxisomes are single membrane-delimited subcellular organelles that carry out numerous vital metabolic reactions in nearly all eukaryotes. Peroxisomes alter their morphology, abundance, and enzymatic constituents in response to environmental cues, yet little is known about the underlying mechanisms. In this work, we investigated the regulatory role of light in peroxisome proliferation in Arabidopsis (Arabidopsis thaliana). We provide evidence that light induces proliferation of peroxisomes in Arabidopsis seedlings and that the peroxisomal protein PEX11b plays an important role in mediating this process. The far-red light receptor phytochrome A (phyA) and the bZIP transcription factor HY5 HOMOLOG (HYH) are both required for the up-regulation of PEX11b in the light. We further demonstrate that the phyA and hyh mutants exhibit reduced peroxisome abundance, a phenotype that can be rescued by overexpressing PEX11b in these plants. The HYH protein is able to bind to the promoter of PEX11b, suggesting that the PEX11b gene is a direct target of HYH. We conclude that HYH and PEX11b constitute a novel branch of the phyA-mediated light signaling cascade, which promotes peroxisome proliferation during seedling photomorphogenesis.
Collapse
Affiliation(s)
- Mintu Desai
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
37
|
Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. PLANT & CELL PHYSIOLOGY 2007; 48:763-74. [PMID: 17478547 DOI: 10.1093/pcp/pcm053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.
Collapse
Affiliation(s)
- Kazumasa Nito
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | | | | | | |
Collapse
|
38
|
Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. THE PLANT CELL 2007; 19:333-50. [PMID: 17220199 PMCID: PMC1820951 DOI: 10.1105/tpc.106.045831] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 11/24/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.
Collapse
Affiliation(s)
- Travis Orth
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mullen RT, Trelease RN. The ER-peroxisome connection in plants: Development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1655-68. [PMID: 17049631 DOI: 10.1016/j.bbamcr.2006.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The perceived role of the ER in the biogenesis of plant peroxisomes has evolved significantly from the original "ER vesiculation" model, which portrayed co-translational import of proteins into peroxisomes originating from the ER, to the "ER semi-autonomous peroxisome" model wherein membrane lipids and post-translationally acquired peroxisomal membrane proteins (PMPs) were derived from the ER. Results from more recent studies of various plant PMPs including ascorbate peroxidase, PEX10 and PEX16, as well as a viral replication protein, have since led to the formulation of a more elaborate "ER semi-autonomous peroxisome maturation and replication" model. Herein we review these results in the context of this newly proposed model and its predecessor models. We discuss also key distinct features of the new model pertaining to its central premise that the ER defines the semi-autonomous maturation (maintenance/assembly/differentiation) and duplication (division) features of specialized classes of pre-existing plant peroxisomes. This model also includes a novel peroxisome-to-ER retrograde sorting pathway that may serve as a constitutive protein retrieval/regulatory system. In addition, new plant peroxisomes are envisaged to arise primarily by duplication of the pre-existing peroxisomes that receive essential membrane components from the ER.
Collapse
Affiliation(s)
- Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
40
|
Rottensteiner H, Theodoulou FL. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1527-40. [PMID: 17010456 DOI: 10.1016/j.bbamcr.2006.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/18/2006] [Indexed: 11/28/2022]
Abstract
Peroxisomes perform a range of metabolic functions which require the movement of substrates, co-substrates, cofactors and metabolites across the peroxisomal membrane. In this review, we discuss the evidence for and against specific transport systems involved in peroxisomal metabolism and how these operate to co-ordinate biochemical reactions within the peroxisome with those in other compartments of the cell.
Collapse
Affiliation(s)
- Hanspeter Rottensteiner
- Medical Faculty of the Ruhr-University of Bochum, Department of Physiological Chemistry, Section of Systems Biochemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
41
|
Nila AG, Sandalio LM, López MG, Gómez M, del Rio LA, Gómez-Lim MA. Expression of a peroxisome proliferator-activated receptor gene (xPPARalpha) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. PLANTA 2006; 224:569-81. [PMID: 16738865 DOI: 10.1007/s00425-006-0246-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 02/01/2006] [Indexed: 05/09/2023]
Abstract
In this work, we have genetically transformed tobacco (Nicotiana tabacum) plants with the peroxisome proliferator-activated receptor cDNA (xPPARalpha) from Xenopus laevis, which is a transcriptional factor involved in the peroxisomal proliferation and induction of fatty acid beta-oxidation in animal cells. Several transgenic lines were generated and one representative line (T) from the R2 generation was selected for further studies. Analysis of free fatty acids revealed that unsaturated fatty acids such as C16:2 and C16:3 were deficient in line T, whereas saturated fatty acids like C16:0, C18:0, and C20:0 were more abundant than in non-transformed plants. Acyl-CoA oxidase (ACOX) activity was assayed as a marker enzyme of beta-oxidation in crude leaf extracts and it was found that in line T there was a threefold increase in enzyme activity. We also found that the peroxisome population was increased and that catalase (CAT) activity was induced by clofibrate, a known activator of xPPARalpha protein, in leaves from line T. Taken together, these findings suggest that xPPARalpha is functional in plants and that its expression in tobacco leads to changes in general lipid metabolism and peroxisomal proliferation as reported in animal cells. Furthermore, it indicates that there is an endogenous ligand in tobacco cells able to activate xPPARalpha.
Collapse
Affiliation(s)
- Alejandro G Nila
- Departamento de Ingeniera Genética y CINVESTAV Irapuato, Km. 9.6, carretera Irapuato-León, Apartado postal 629, 36500 Irapouato, GTP, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Lee JR, Jang HH, Park JH, Jung JH, Lee SS, Park SK, Chi YH, Moon JC, Lee YM, Kim SY, Kim JY, Yun DJ, Cho MJ, Lee KO, Lee SY. Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:457-66. [PMID: 16792693 DOI: 10.1111/j.1365-313x.2006.02797.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using the rice PEX14 cDNA as a bait in a yeast two-hybrid assay, two splice variants of the type I peroxisomal targeting signal (PTS1) receptor, OsPex5pL and OsPex5pS, were cloned from a pathogen-treated rice leaf cDNA library. The proteins were produced from a single gene by alternative splicing, which generated a full-length variant, OsPEX5L, and a variant that lacked exon 7, OsPEX5S. OsPex5pL contained 11 copies of the pentapeptide motif WXXXF/Y in its N-terminus, and seven tetratricopeptide repeats in its C-terminus. Expression of OsPEX5L and OsPEX5S predominantly occurred in leaf tissues, and was induced by various stresses, such as exposure to the pathogen Magnaporthe grisea, and treatment with fungal elicitor, methyl viologen, NaCl or hydrogen peroxide. The Arabidopsis T-DNA insertional pex5 mutant, Atpex5, which does not germinate in the absence of sucrose and was resistant to indole-3-butyric acid (IBA), was perfectly rescued by over-expression of OsPex5pL, but not by OsPex5pS. Using transient expression of OsPex5pL and OsPex5pS in the Atpex5 mutant, we show that OsPex5pL translocates both PTS1- and PTS2-containing proteins into the peroxisome by interacting with OsPex7p, whereas OsPex5pS is involved only in PTS1-dependent import in Arabidopsis.
Collapse
Affiliation(s)
- Jung Ro Lee
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. PLANT PHYSIOLOGY 2006; 141:330-5. [PMID: 16760483 PMCID: PMC1475433 DOI: 10.1104/pp.106.078204] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Luis A del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain.
| | | | | | | | | |
Collapse
|
44
|
Schrader M. Shared components of mitochondrial and peroxisomal division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:531-41. [PMID: 16487606 DOI: 10.1016/j.bbamcr.2006.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 12/15/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity. Recent studies have led to the surprising finding that both organelles share components of their division machinery, namely the dynamin-related protein DLP1/Drp1 and hFis1, which recruits DLP1/Drp1 to the organelle membranes. This review addresses the current state of knowledge concerning the dynamics and fission of peroxisomes, especially in relation to mitochondrial morphology and division in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch Str. 6, 35037 Marburg, Germany.
| |
Collapse
|
45
|
Mullen RT, McCartney AW, Flynn CR, Smith GS. Peroxisome biogenesis and the formation of multivesicular peroxisomes during tombusvirus infection: a role for ESCRT?This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.
Collapse
Affiliation(s)
- Robert T. Mullen
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Andrew W. McCartney
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - C. Robb Flynn
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Graham S.T. Smith
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| |
Collapse
|
46
|
Zolman BK, Monroe-Augustus M, Silva ID, Bartel B. Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. THE PLANT CELL 2005; 17:3422-35. [PMID: 16272432 PMCID: PMC1315379 DOI: 10.1105/tpc.105.035691] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxins are genetically defined as proteins necessary for peroxisome biogenesis. By screening for reduced response to indole-3-butyric acid, which is metabolized to active auxin in peroxisomes, we isolated an Arabidopsis thaliana peroxin4 (pex4) mutant. This mutant displays sucrose-dependent seedling development and reduced lateral root production, characteristics of plant peroxisome malfunction. We used yeast two-hybrid analysis to determine that PEX4, an apparent ubiquitin-conjugating enzyme, interacts with a previously unidentified Arabidopsis protein, PEX22. A pex4 pex22 double mutant enhanced pex4 defects, confirming that PEX22 is a peroxin. Expression of both Arabidopsis genes together complemented yeast pex4 or pex22 mutant defects, whereas expression of either gene individually failed to rescue the corresponding yeast mutant. Therefore, it is likely that the Arabidopsis proteins can function similarly to the yeast PEX4-PEX22 complex, with PEX4 ubiquitinating substrates and PEX22 tethering PEX4 to the peroxisome. However, the severe sucrose dependence of the pex4 pex22 mutant is not accompanied by correspondingly strong defects in peroxisomal matrix protein import, suggesting that this peroxin pair may have novel plant targets in addition to those important in fungi. Isocitrate lyase is stabilized in pex4 pex22, indicating that PEX4 and PEX22 may be important during the remodeling of peroxisome matrix contents as glyoxysomes transition to leaf peroxisomes.
Collapse
Affiliation(s)
- Bethany K Zolman
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
47
|
Baker A, Sparkes IA. Peroxisome protein import: some answers, more questions. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:640-7. [PMID: 16182600 DOI: 10.1016/j.pbi.2005.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/13/2005] [Indexed: 05/04/2023]
Abstract
Recent advances in the study of plant peroxisomes are shedding new light on the importance of these organelles for plant development, and are revealing similarities and differences in peroxisome protein import pathways between plants, animals and fungi. For example, the import of matrix proteins that carry the PTS1 and PTS2 targeting signals is coupled in plants as it is in mammals, whereas these import pathways are separate in fungi. The expression of a human peroxisomal ATPase partially rescues the equivalent Arabidopsis mutant. Ubiquitination might play a role in receptor recycling in Saccharomyces cerevisiae and exciting progress is being made through studies of the targeting of membrane proteins.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
48
|
Bonsegna S, Slocombe SP, De Bellis L, Baker A. AtLACS7 interacts with the TPR domains of the PTS1 receptor PEX5. Arch Biochem Biophys 2005; 443:74-81. [PMID: 16256065 DOI: 10.1016/j.abb.2005.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/16/2005] [Accepted: 09/17/2005] [Indexed: 11/24/2022]
Abstract
Long-chain acyl-CoA synthetases (LACSs) activate fatty acids for further metabolism and are encoded by a multi-gene family in Arabidopsis. AtLACS6 possesses a type 2 (PTS2) peroxisomal targeting sequence, whilst AtLACS7 has both a type 1 and type 2 peroxisomal targeting sequence. AtLACS7 was used as bait in a yeast two-hybrid screen. Multiple clones of the PTS1 receptor PEX5 were isolated. Quantitative beta-galactosidase assay indicated that full-length PEX5 interacts with AtLACS7 with higher affinity than the TPR domains alone. The interaction between PEX5 and AtLACS7 was confirmed by co-immunoprecipitation and shown to be specific for the PTS1, therefore the AtLACS7 PTS1 is accessible to bind PEX5 in the full-length AtLACS7 protein. The expression profile of AtLACS6, AtLACS7, AtPEX5, and AtPEX7 revealed that AtLACS6 and 7 have distinct patterns of expression and we speculate that the possession of two targeting signals may be advantageous for the import of AtLACS7 when receptors may be limiting.
Collapse
Affiliation(s)
- Stefania Bonsegna
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Italy
| | | | | | | |
Collapse
|
49
|
Kuzniak E, Skłodowska M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. PLANTA 2005; 222:192-200. [PMID: 15843961 DOI: 10.1007/s00425-005-1514-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 02/03/2005] [Indexed: 05/08/2023]
Abstract
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.
Collapse
Affiliation(s)
- Elźbieta Kuzniak
- Department of Plant Physiology and Biochemistry, University of Łódź, 90-237 Łódź, Banacha 12/16, Poland.
| | | |
Collapse
|
50
|
Fan J, Quan S, Orth T, Awai C, Chory J, Hu J. The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. PLANT PHYSIOLOGY 2005; 139:231-9. [PMID: 16113209 PMCID: PMC1203373 DOI: 10.1104/pp.105.066811] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Peroxisomes perform diverse and vital functions in eukaryotes, and abnormalities in peroxisomal function lead to severe developmental disorders in humans. Peroxisomes are also involved in a wide array of physiological and metabolic functions unique to plants, yet many aspects of this important organelle are poorly understood. In yeast and mammals, various steps in peroxisome biogenesis require the function of peroxin (PEX) proteins, among which PEX12 is a RING finger peroxisomal membrane protein involved in the import of matrix proteins. To investigate the role of PEX12 in plants, we identified a T-DNA knockout allele of PEX12 and generated partial loss-of-function pex12 mutants using RNA interference. We show that pex12 null mutants are developmentally arrested during early embryogenesis, and that the embryo-lethal phenotype can be rescued by overexpression of the PEX12-cyan fluorescent protein fusion protein, which targets to the peroxisome. Using virus-induced gene-silencing techniques, we demonstrate that peroxisomal number and fluorescence of the yellow fluorescent protein-peroxisome targeting signal type 1 protein are greatly reduced when PEX12 is silenced. RNA interference plants with partial reduction of the PEX12 transcript exhibit impaired peroxisome biogenesis and function, inhibition of plant growth, and reduced fertility. Our work provides evidence that the Arabidopsis (Arabidopsis thaliana) PEX12 protein is required for peroxisome biogenesis and plays an essential role throughout plant development.
Collapse
Affiliation(s)
- Jilian Fan
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | |
Collapse
|