1
|
Ye H, Luo G, Zheng Z, Li X, Cao J, Liu J, Dai J. Plant synthetic genomics: Big lessons from the little yeast. Cell Chem Biol 2024; 31:1745-1754. [PMID: 39214084 DOI: 10.1016/j.chembiol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Yeast has been extensively studied and engineered due to its genetic amenability. Projects like Sc2.0 and Sc3.0 have demonstrated the feasibility of constructing synthetic yeast genomes, yielding promising results in both research and industrial applications. In contrast, plant synthetic genomics has faced challenges due to the complexity of plant genomes. However, recent advancements of the project SynMoss, utilizing the model moss plant Physcomitrium patens, offer opportunities for plant synthetic genomics. The shared characteristics between P. patens and yeast, such as high homologous recombination rates and dominant haploid life cycle, enable researchers to manipulate P. patens genomes similarly, opening promising avenues for research and application in plant synthetic biology. In conclusion, harnessing insights from yeast synthetic genomics and applying them to plants, with P. patens as a breakthrough, shows great potential for revolutionizing plant synthetic genomics.
Collapse
Affiliation(s)
- Hao Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guangyu Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenwu Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jie Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jia Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Xu C, Birchler JA. Editorial: Plant artificial chromosomes: progress and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1290386. [PMID: 37822343 PMCID: PMC10562729 DOI: 10.3389/fpls.2023.1290386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO, United States
| |
Collapse
|
3
|
Birchler JA, Swyers NC. Engineered minichromosomes in plants. Exp Cell Res 2020; 388:111852. [PMID: 31972219 DOI: 10.1016/j.yexcr.2020.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA.
| | - Nathan C Swyers
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211-7400, USA
| |
Collapse
|
4
|
Ren J, Wu P, Trampe B, Tian X, Lübberstedt T, Chen S. Novel technologies in doubled haploid line development. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1361-1370. [PMID: 28796421 PMCID: PMC5633766 DOI: 10.1111/pbi.12805] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.
Collapse
Affiliation(s)
- Jiaojiao Ren
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Penghao Wu
- College of AgronomyXinjiang Agriculture UniversityUrumqiChina
| | | | - Xiaolong Tian
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| | | | - Shaojiang Chen
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Yan X, Li C, Yang J, Wang L, Jiang C, Wei W. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:700-713. [PMID: 28500683 DOI: 10.1111/tpj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere-mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site-specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chen Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China
| | - Jie Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
| |
Collapse
|
6
|
Yu W, Yau YY, Birchler JA. Plant artificial chromosome technology and its potential application in genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1175-1182. [PMID: 26369910 DOI: 10.1111/pbi.12466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.
Collapse
Affiliation(s)
- Weichang Yu
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Srivastava V, Thomson J. Gene stacking by recombinases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:471-82. [PMID: 26332944 DOI: 10.1111/pbi.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 05/09/2023]
Abstract
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site-specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high-efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
8
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Hake S, Ross-Ibarra J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 2015; 4. [PMID: 25807085 PMCID: PMC4373674 DOI: 10.7554/elife.05861] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/11/2015] [Indexed: 01/09/2023] Open
Abstract
The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties. DOI:http://dx.doi.org/10.7554/eLife.05861.001
Collapse
Affiliation(s)
- Sarah Hake
- Plant Gene Expression Center, US Department of Agriculture-Agriculture Research Service, Albany, United States and Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology and Genome Center, University of California, Davis, Davis, United States
| |
Collapse
|
10
|
Abstract
Engineered minimal chromosomes with sufficient mitotic and meiotic stability have an enormous potential as vectors for stacking multiple genes required for complex traits in plant biotechnology. Proof of principle for essential steps in chromosome engineering such as truncation of chromosomes by T-DNA-mediated telomere seeding and de novo formation of centromeres by cenH3 fusion protein tethering has been recently obtained. In order to generate robust protocols for application in plant biotechnology, these steps need to be combined and supplemented with additional methods such as site-specific recombination for the directed transfer of multiple genes of interest on the minichromosomes. At the same time, the development of these methods allows new insight into basic aspects of plant chromosome functions such as how centromeres assure proper distribution of chromosomes to daughter cells or how telomeres serve to cap the chromosome ends to prevent shortening of ends over DNA replication cycles and chromosome end fusion.
Collapse
Affiliation(s)
- Michael Florian Mette
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany,
| | | |
Collapse
|
11
|
Hou L, Yau YY, Wei J, Han Z, Dong Z, Ow DW. An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. MOLECULAR PLANT 2014; 7:1756-65. [PMID: 25281665 DOI: 10.1093/mp/ssu107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid development of crops with multiple transgenic traits arouses the need for an efficient system for creating stacked cultivars. Most major crops rely on classical breeding to introgress the transgene from a laboratory variety to the numerous cultivars adapted to different growing regions. Even with vegetative propagated crops, genetic crosses are conducted during varietal improvement prior to vegetative cloning. The probability to assort the 'x' number of transgenic loci into a single genome may seem trivial, (¼) (x) for a diploid species, but given the 'y' number of other nontransgenic traits that breeders also need to assemble into the same genome, the (¼) (x+y) probability for a 'breeding stack' could quickly make the line conversion process unmanageable. Adding new transgenes onto existing transgenic varieties without creating a new segregating locus would require site-specific integration of new DNA at the existing transgenic locus. Here, we tested a recombinase-mediated gene-stacking scheme in tobacco. Sequential site-specific integration was mediated by the mycobacteriophage Bxb1 integrase-catalyzed recombination between attP and attB sites. Transgenic DNA no longer needed after integration was excised by Cre recombinase-mediated recombination of lox sites. Site-specific integration occurred in ~10% of the integration events, with half of those events usable as substrates for a next round of gene stacking. Among the site-specific integrants, however, a third experienced gene silencing. Overall, precise structure and reproducible expression of the sequentially added triple traits were obtained at an overall rate of ~3% of the transformed clones--a workable frequency for the development of commercial cultivars. Moreover, since neither the Bxb1-att nor the Cre-lox system is under patent, there is freedom to operate.
Collapse
Affiliation(s)
- Lili Hou
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuan-Yeu Yau
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | - Junjie Wei
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiguo Han
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| |
Collapse
|