1
|
Raffeiner M. DNE1 scissorhands: How the power of omics sheds light on the control of mRNA decay. THE PLANT CELL 2024; 36:3326-3327. [PMID: 39046008 PMCID: PMC11371187 DOI: 10.1093/plcell/koae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Margot Raffeiner
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
2
|
Su J, Gassmann W. Cytoplasmic regulation of chloroplast ROS accumulation during effector-triggered immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1127833. [PMID: 36794218 PMCID: PMC9922995 DOI: 10.3389/fpls.2023.1127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggests that chloroplasts are an important battleground during various microbe-host interactions. Plants have evolved layered strategies to reprogram chloroplasts to promote de novo biosynthesis of defense-related phytohormones and the accumulation of reactive oxygen species (ROS). In this minireview, we will discuss how the host controls chloroplast ROS accumulation during effector-triggered immunity (ETI) at the level of selective mRNA decay, translational regulation, and autophagy-dependent formation of Rubisco-containing bodies (RCBs). We hypothesize that regulation at the level of cytoplasmic mRNA decay impairs the repair cycle of photosystem II (PSII) and thus facilitates ROS generation at PSII. Meanwhile, removing Rubisco from chloroplasts potentially reduces both O2 and NADPH consumption. As a consequence, an over-reduced stroma would further exacerbate PSII excitation pressure and enhance ROS production at photosystem I.
Collapse
|
3
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
4
|
Hung YH, Slotkin RK. The initiation of RNA interference (RNAi) in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102014. [PMID: 33657510 DOI: 10.1016/j.pbi.2021.102014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 05/15/2023]
Abstract
When an mRNA enters into the RNA degradation pathway called RNA interference (RNAi), it is cleaved into small interfering RNAs (siRNAs) that then target complementary mRNAs for destruction. The consequence of entry into RNAi is mRNA degradation, post-transcriptional silencing and in some cases transcriptional silencing. RNAi functions as a defense against transposable element and virus activity, and in plants, RNAi additionally plays a role in development by regulating some genes. However, it is unknown how specific transcripts are selected for RNAi, and how most genic mRNAs steer clear. This Current Opinion article explores the key question of how RNAs are selected for entry into RNAi, and proposes models that enable the cell to distinguish between transcripts to translate versus destroy.
Collapse
Affiliation(s)
- Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA; Division of Biological Sciences, University of Missouri-Columbia, 65211, USA.
| |
Collapse
|
5
|
Auth M, Nyikó T, Auber A, Silhavy D. The role of RST1 and RIPR proteins in plant RNA quality control systems. PLANT MOLECULAR BIOLOGY 2021; 106:271-284. [PMID: 33864582 PMCID: PMC8116306 DOI: 10.1007/s11103-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.
Collapse
Affiliation(s)
- Mariann Auth
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary.
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary.
| |
Collapse
|
6
|
Pan S, Li KE, Huang W, Zhong H, Wu H, Wang Y, Zhang H, Cai Z, Guo H, Chen X, Xia Y. Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:967-983. [PMID: 31449356 PMCID: PMC8034840 DOI: 10.1111/jipb.12867] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 05/26/2023]
Abstract
RNA capping and decapping tightly coordinate with transcription, translation, and RNA decay to regulate gene expression. Proteins in the DXO/Rai1 family have been implicated in mRNA decapping and decay, and mammalian DXO was recently found to also function as a decapping enzyme for NAD+ -capped RNAs (NAD-RNA). The Arabidopsis genome contains a single gene encoding a DXO/Rai1 protein, AtDXO1. Here we show that AtDXO1 possesses both NAD-RNA decapping activity and 5'-3' exonuclease activity but does not hydrolyze the m7 G cap. The atdxo1 mutation increased the stability of NAD-RNAs and led to pleiotropic phenotypes, including severe growth retardation, pale color, and multiple developmental defects. Transcriptome profiling analysis showed that the atdxo1 mutation resulted in upregulation of defense-related genes but downregulation of photosynthesis-related genes. The autoimmunity phenotype of the mutant could be suppressed by either eds1 or npr1 mutation. However, the various phenotypes associated with the atdxo1 mutant could be complemented by an enzymatically inactive AtDXO1. The atdxo1 mutation apparently enhances post-transcriptional gene silencing by elevating levels of siRNAs. Our study indicates that AtDXO1 regulates gene expression in various biological and physiological processes through its pleiotropic molecular functions in mediating RNA processing and decay.
Collapse
Affiliation(s)
- Shuying Pan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kai-en Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huihui Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Wang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - He Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwei Guo
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Agricultural Biotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|