1
|
Seligmann B, Liu S, Franke J. Chemical tools for unpicking plant specialised metabolic pathways. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102554. [PMID: 38820646 DOI: 10.1016/j.pbi.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Elucidating the biochemical pathways of specialised metabolites in plants is key to enable or improve their sustainable biotechnological production. Chemical tools can greatly facilitate the discovery of biosynthetic genes and enzymes. Here, we summarise transdisciplinary approaches where methods from chemistry and chemical biology helped to overcome key challenges of pathway elucidation. Based on recent examples, we describe how state-of-the-art isotope labelling experiments can guide the selection of biosynthetic gene candidates, how affinity-based probes enable the identification of novel enzymes, how semisynthesis can improve the availability of elusive pathway intermediates, and how biomimetic reactions provide a better understanding of inherent chemical reactivity. We anticipate that a wider application of such chemical methods will accelerate the pace of pathway elucidation in plants.
Collapse
Affiliation(s)
- Benedikt Seligmann
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Shenyu Liu
- Leibniz University Hannover, Centre of Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| | - Jakob Franke
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany; Leibniz University Hannover, Centre of Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Riboni N, Bianchi F, Mattarozzi M, Peracchia M, Meleti M, Careri M. Ultra-high performance liquid chromatography high-resolution mass spectrometry for metabolomic analysis of dental calculus from Duke Alessandro Farnese and Maria D'Aviz. Sci Rep 2023; 13:8967. [PMID: 37268814 PMCID: PMC10238497 DOI: 10.1038/s41598-023-36177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Dental calculus is a valuable resource for the reconstruction of dietary habits and oral microbiome of past populations. In 2020 the remains of Duke Alessandro Farnese and his wife Maria D'Aviz were exhumed to get novel insights into the causes of death. This study aimed to investigate the dental calculus metabolome of the noble couple by untargeted metabolomics. The pulverized samples were decalcified in a water-formic acid mixture, extracted using methanol/acetonitrile and analyzed by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) using a reversed-phase separation followed by electrospray ionization and full scan in positive and negative ion mode. Waters Synapt-G2-Si High-Definition hybrid quadrupole time-of-flight mass spectrometer was used. Significant features were then identified using MSE acquisition mode, recording information on exact mass precursor and fragment ions within the same run. This approach, together with data pre-treatment and multivariate statistical analysis allowed for the identification of compounds able to differentiate between the investigated samples. More than 200 metabolites were identified, being fatty acids, alcohols, aldehydes, phosphatidylcholines, phosphatidylglycerols, ceramides and phosphatidylserines the most abundant classes. Metabolites deriving from food, bacteria and fungi were also determined, providing information on the habits and oral health status of the couple.
Collapse
Affiliation(s)
- Nicolo' Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy.
| | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy.
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Marianna Peracchia
- Department of Medicine and Surgery, Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Marco Meleti
- Department of Medicine and Surgery, Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
3
|
Alseekh S, Fernie AR. Expanding our coverage: Strategies to detect a greater range of metabolites. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102335. [PMID: 36689903 DOI: 10.1016/j.pbi.2022.102335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Whilst the study of metabolites can arguably be traced back several hundred years it began in earnest in the 20th century with studies based on single metabolites or simple metabolic pathways. The advent of metabolomics and in particular the adoption of high-resolution mass spectrometry now means we can faithfully annotate and quantify in excess of 1000 plant metabolites. Whilst this is an impressive leap it falls well short of the estimated number of metabolites in the plant kingdom. This, whilst considerable and important insights have been achieved using commonly utilized approaches, there is a need to improve the coverage of the metabolome. Here, we review three largely complementary strategies (i) methods based on using chemical libraries (ii) methods based on molecular networking and (iii) approaches that link metabolomics and genetic variance. It is our contention that using all three approaches in tandem represents the best approach to tackle this challenge.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Schlossarek D, Zhang Y, Sokolowska EM, Fernie AR, Luzarowski M, Skirycz A. Don't let go: co-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:904-914. [PMID: 36575913 DOI: 10.1111/tpj.16084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The chemical complexity of metabolomes goes hand in hand with their functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein-metabolite interaction (PMI) network underlies most if not all biological processes, but remains under-characterized. Herein, we highlight how co-fractionation mass spectrometry (CF-MS), a well-established approach to map protein assemblies, can be used for proteome and metabolome identification of the PMIs. We will review recent CF-MS studies, discuss the main advantages and limitations, summarize the available CF-MS guidelines, and outline future challenges and opportunities.
Collapse
Affiliation(s)
- Dennis Schlossarek
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Youjun Zhang
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewelina M Sokolowska
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Center for Molecular Biology Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aleksandra Skirycz
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
5
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
6
|
Cai Y, Zhou Z, Zhu ZJ. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Snyder KA, Robinson SA, Schmidt S, Hultine KR. Stable isotope approaches and opportunities for improving plant conservation. CONSERVATION PHYSIOLOGY 2022; 10:coac056. [PMID: 35966756 PMCID: PMC9367551 DOI: 10.1093/conphys/coac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/15/2021] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Successful conservation of threatened species and ecosystems in a rapidly changing world requires scientifically sound decision-making tools that are readily accessible to conservation practitioners. Physiological applications that examine how plants and animals interact with their environment are now widely used when planning, implementing and monitoring conservation. Among these tools, stable-isotope physiology is a potentially powerful, yet under-utilized cornerstone of current and future conservation efforts of threatened and endangered plants. We review the underlying concepts and theory of stable-isotope physiology and describe how stable-isotope applications can support plant conservation. We focus on stable isotopes of carbon, hydrogen, oxygen and nitrogen to address plant ecophysiological responses to changing environmental conditions across temporal scales from hours to centuries. We review examples from a broad range of plant taxa, life forms and habitats and provide specific examples where stable-isotope analysis can directly improve conservation, in part by helping identify resilient, locally adapted genotypes or populations. Our review aims to provide a guide for practitioners to easily access and evaluate the information that can be derived from stable-isotope signatures, their limitations and how stable isotopes can improve conservation efforts.
Collapse
Affiliation(s)
- Keirith A Snyder
- Corresponding author: USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno,
920 Valley Road, NV 89512, USA.
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, Building 62, Brisbane Queensland 4075, Australia
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 Galvin Parkway, Phoenix, AZ 85008, USA
| |
Collapse
|
8
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
9
|
Metabolite Profiling and Classification of Highbush Blueberry Leaves under Different Shade Treatments. Metabolites 2022; 12:metabo12010079. [PMID: 35050200 PMCID: PMC8778333 DOI: 10.3390/metabo12010079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Blueberry belongs to the genus Vaccinium L. in the Ericaceae and is an economically important shrub that produces small berries that are rich in nutrients. There were differences in the appearance of blueberry leaves under different shade treatments. To explore the differences in metabolites in blueberry leaves under different shading treatments, nontargeted liquid chromatography-mass spectrometry (LC-MS) metabonomic analysis was performed. Different shade intensities resulted in significant differences in the contents of metabolites. A total of 6879 known metabolites were detected, including 750 significantly differentially expressed metabolites, including mainly lipids and lipid-like molecules and phenylpropanoid and polyketide superclass members. Based on a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the flavone and flavonol biosynthesis pathways were the most significantly enriched. The results of this study provide a reference and scientific basis for the establishment of a high-quality and high-yield shaded blueberry cultivation system.
Collapse
|
10
|
Nakabayashi R. Sample Preparation, Data Acquisition, and Data Analysis for 15N-Labeled and Nonlabeled Monoterpene Indole Alkaloids in Catharanthus roseus. Methods Mol Biol 2022; 2505:59-68. [PMID: 35732936 DOI: 10.1007/978-1-0716-2349-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent approaches developed in metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) enabled us to assign a part of specialized metabolites in plants. However, the approaches are not good enough for the rest of the metabolites, which are still unknown. To characterize the unknown metabolites, more appropriate and precise approaches need to be developed. Here, a procedure to analyze 15N-labeled and nonlabeled LC-MS/MS data for identification of monoterpene indole alkaloids was developed.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
11
|
Song H, Chen Y, Cai Z, Wu X, Zhang S. Nitrogen-influenced competition between the genders of Salix rehderiana. TREE PHYSIOLOGY 2021; 41:2375-2391. [PMID: 34137865 DOI: 10.1093/treephys/tpab083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Male and female willow plants show spatial segregation of genders along the environmental gradients. The skewed gender ratio of willows is related not only to altitude, but also to nutrient status and sexual competition, which can affect their growth and defense by altering secondary metabolite production. The relationship between metabolites and nutrients in the two genders of Salix rehderiana was explored in the Gongga Mountain. We found that the gender ratio was altered with a change in soil nitrogen (N) status; in the high N habitats, secondary metabolites accumulated in males. Furthermore, a pot experiment was conducted to test the effect of N supply on gender competition in S. rehderiana. Sufficient N supply stimulated females to produce amino acids and carbon (C)-containing secondary metabolites for maintaining their C-N balance, but extra N for males was used for growth to occupy more space. Nitrogen supply induced foliar nutrient imbalances and growth of opportunistic species, allowing them to outcompete neighbors. Better C allocation and storage in male than female willows would benefit intersexual competitiveness of males if environment N increases. Competition between the genders has a significant correlation with skewed gender ratio, spatial separation and resource utilization. Female willows would suffer fiercer competition for space by males with the increased soil N, which would result in the gender ratio alteration. Therefore, gender ratio of willows is likely to convert to gender balance from female-biased with long-term N deposition in the future.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xinxin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
13
|
Ghosh R, Bu G, Nannenga BL, Sumner LW. Recent Developments Toward Integrated Metabolomics Technologies (UHPLC-MS-SPE-NMR and MicroED) for Higher-Throughput Confident Metabolite Identifications. Front Mol Biosci 2021; 8:720955. [PMID: 34540897 PMCID: PMC8445028 DOI: 10.3389/fmolb.2021.720955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Metabolomics has emerged as a powerful discipline to study complex biological systems from a small molecule perspective. The success of metabolomics hinges upon reliable annotations of spectral features obtained from MS and/or NMR. In spite of tremendous progress with regards to analytical instrumentation and computational tools, < 20% of spectral features are confidently identified in most untargeted metabolomics experiments. This article explores the integration of multiple analytical instruments such as UHPLC-MS/MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for the simultaneous automated purification of metabolites followed by offline structure elucidation and structure validation by NMR and MicroED. Large-scale study of complex metabolomes such as that of the model plant legume Medicago truncatula can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform. Additionally, recent developments in MicroED to study structures of small organic molecules have enabled faster, easier and precise structure determinations of metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal screening, sample preparation, data collection and data processing/structure determination) has been described. Ongoing MicroED methods development and its future scope related to structure elucidation of specialized metabolites and metabolomics are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR instrumental ensemble offers the potential to accelerate and achieve higher rates of metabolite identification.
Collapse
Affiliation(s)
- Rajarshi Ghosh
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| | - Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Brent L. Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lloyd W. Sumner
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| |
Collapse
|
14
|
Nakabayashi R, Yamada Y, Nishizawa T, Mori T, Asano T, Kuwabara M, Saito K. Tandem Mass Spectrum Similarity-Based Network Analysis Using 13C-Labeled and Non-labeled Metabolome Data to Identify the Biosynthetic Pathway of the Blood Pressure-Lowering Asparagus Metabolite Asparaptine A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8571-8577. [PMID: 34269574 DOI: 10.1021/acs.jafc.1c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The biosynthetic pathway of asparaptine, a naturally occurring inhibitor of angiotensin-converting enzyme (ACE) in vitro, is largely unknown in Asparagus officinalis. To determine which metabolites are involved in the pathway, we performed tandem mass spectrum similarity-based metabolome network analysis using 13C-labeled and non-labeled valine-fed asparagus calluses. We revealed that S-(2-carboxy-n-propyl)-cysteine as an intermediate and two new metabolites as asparaptine analogues, lysine- and histidine-type conjugates, are involved in the pathway. Asparaptine was therefore renamed asparaptine A (arginine type), and the two analogues were named asparaptines B (lysine type) and C (histidine type). Oral feeding of asparaptine A to a hypertensive mouse breed showed that this metabolite lowers both the blood pressure and heart rate within 2 h and the effect of asparaptine A wears off after 2 days. These results suggest that asparaptine A may not only have effects as an ACE inhibitor but also have β-antagonistic effects.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takashi Asano
- Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat Commun 2021; 12:405. [PMID: 33452249 PMCID: PMC7810986 DOI: 10.1038/s41467-020-20508-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes' evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.
Collapse
|
16
|
Yamashita H, Kambe Y, Ohshio M, Kunihiro A, Tanaka Y, Suzuki T, Nakamura Y, Morita A, Ikka T. Integrated Metabolome and Transcriptome Analyses Reveal Etiolation-Induced Metabolic Changes Leading to High Amino Acid Contents in a Light-Sensitive Japanese Albino Tea Cultivar. FRONTIERS IN PLANT SCIENCE 2020; 11:611140. [PMID: 33537046 PMCID: PMC7847902 DOI: 10.3389/fpls.2020.611140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 05/16/2023]
Abstract
Plant albinism causes the etiolation of leaves because of factors such as deficiency of chloroplasts or chlorophylls. In general, albino tea leaves accumulate higher free amino acid (FAA) contents than do conventional green tea leaves. To explore the metabolic changes of etiolated leaves (EL) in the light-sensitive Japanese albino tea cultivar "Koganemidori," we performed integrated metabolome and transcriptome analyses by comparing EL with green leaves induced by bud-sport mutation (BM) or shading treatments (S-EL). Comparative omics analyses indicated that etiolation-induced molecular responses were independent of the light environment and were largely influenced by the etiolation itself. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and pathway analyses revealed the downregulation of genes involved in chloroplast development and chlorophyll biosynthesis and upregulation of protein degradation-related pathways, such as the ubiquitin-proteasome system and autophagy in EL. Metabolome analysis showed that most quantified FAAs in EL were highly accumulated compared with those in BM and S-EL. Genes involved in the tricarboxylic acid (TCA) cycle, nitrogen assimilation, and the urea cycle, including the drastically downregulated Arginase-1 homolog, which functions in nitrogen excretion for recycling, showed lower expression levels in EL. The high FAA contents in EL might result from the increased FAA pool and nitrogen source contributed by protein degradation, low N consumption, and stagnation of the urea cycle rather than through enhanced amino acid biosynthesis.
Collapse
Affiliation(s)
- Hiroto Yamashita
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Yuka Kambe
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Megumi Ohshio
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Aya Kunihiro
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Yasuno Tanaka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Toshikazu Suzuki
- Tea Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, Shizuoka, Japan
| | - Yoriyuki Nakamura
- Graduate Division of Nutritional and Environmental Science, Tea Science Center, University of Shizuoka, Shizuoka, Japan
| | - Akio Morita
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Institute for Tea Science, Shizuoka University, Shizuoka, Japan
| | - Takashi Ikka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Institute for Tea Science, Shizuoka University, Shizuoka, Japan
- *Correspondence: Takashi Ikka,
| |
Collapse
|