1
|
Odeku OA, Ogunniyi QA, Ogbole OO, Fettke J. Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2024; 13:1208. [PMID: 38732424 PMCID: PMC11085438 DOI: 10.3390/plants13091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
In an era dominated by conventional agricultural practices, underutilized legumes termed "Forgotten Gems" represent a reservoir of untapped benefits with the unique opportunity to diversify agricultural landscapes and enhance global food systems. Underutilized crops are resistant to abiotic environmental conditions such as drought and adapt better to harsh soil and climatic conditions. Underutilized legumes are high in protein and secondary metabolites, highlighting their role in providing critical nutrients and correcting nutritional inadequacies. Their ability to increase dietary variety and food security emerges as a critical component of their importance. Compared to mainstream crops, underutilized legumes have been shown to reduce the environmental impact of climate change. Their capacity for nitrogen fixation and positive impact on soil health make them sustainable contributors to biodiversity conservation and environmental balance. This paper identifies challenges and proposes strategic solutions, showcasing the transformative impact of underutilized legumes on agriculture, nutrition, and sustainability. These "Forgotten Gems" should be recognized, integrated into mainstream agricultural practices, and celebrated for their potential to revolutionize global food production while promoting environmental sustainability.
Collapse
Affiliation(s)
- Oluwatoyin A. Odeku
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan 200132, Nigeria;
| | - Queeneth A. Ogunniyi
- Department of Pharmacognosy, University of Ibadan, Ibadan 200132, Nigeria; (Q.A.O.); (O.O.O.)
| | - Omonike O. Ogbole
- Department of Pharmacognosy, University of Ibadan, Ibadan 200132, Nigeria; (Q.A.O.); (O.O.O.)
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Uba CU, Oselebe HO, Tesfaye AA, Abtew WG. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genomics 2023; 24:593. [PMID: 37803263 PMCID: PMC10557193 DOI: 10.1186/s12864-023-09684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.
Collapse
Affiliation(s)
- Charles U Uba
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia.
| | | | - Abush A Tesfaye
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
3
|
Ogbole OO, Akin-Ajani OD, Ajala TO, Ogunniyi QA, Fettke J, Odeku OA. Nutritional and pharmacological potentials of orphan legumes: Subfamily faboideae. Heliyon 2023; 9:e15493. [PMID: 37151618 PMCID: PMC10161725 DOI: 10.1016/j.heliyon.2023.e15493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Legumes are a major food crop in many developing nations. However, orphan or underutilized legumes are domesticated legumes that have valuable properties but are less significant than main legumes due to use and supply restrictions. Compared to other major legumes, they are better suited to harsh soil and climate conditions, and their great tolerance to abiotic environmental circumstances like drought can help to lessen the strains brought on by climate change. Despite this, their economic significance in international markets is relatively minimal. This article is aimed at carrying out a comprehensive review of the nutritional and pharmacological benefits of orphan legumes from eight genera in the sub-family Faboidea, namely Psophocarpus Neck. ex DC., Tylosema (Schweinf.) Torre Hillc., Vigna Savi., Vicia L., Baphia Afzel. ex G. Lodd., Mucuna Adans, Indigofera L. and Macrotyloma (Wight & Arn.) Verdc, and the phytoconstituents that have been isolated and characterized from these plants. A literature search was conducted using PubMed, Google Scholar, and Science Direct for articles that have previously reported the relevance of underutilized legumes. The International Union for Conservation of Nature (IUCN) red list of threatened species was also conducted for the status of the species. References were scrutinized and citation searches were performed on the study. The review showed that many underutilized legumes have a lot of untapped potential in terms of their nutritional and pharmacological activities. The phytoconstituents from plants in the subfamily Faboideae could serve as lead compounds for drug discovery for the treatment of a variety of disorders, indicating the need to explore these plant species.
Collapse
Affiliation(s)
| | - Olufunke D. Akin-Ajani
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Tolulope O. Ajala
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Joerg Fettke
- Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Oluwatoyin A. Odeku
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan, Nigeria
- Corresponding author.
| |
Collapse
|
4
|
Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean ( Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms). Genes (Basel) 2022; 13:genes13122350. [PMID: 36553617 PMCID: PMC9777823 DOI: 10.3390/genes13122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Seed size is an important yield and quality-determining trait in higher plants and is also crucial to their evolutionary fitness. In African yam bean (AYB), seed size varies widely among different accessions. However, the genetic basis of such variation has not been adequately documented. A genome-wide marker-trait association study was conducted to identify genomic regions associated with four seed size traits (seed length, seed width, seed thickness, and 100-seed weight) in a panel of 195 AYB accessions. A total of 5416 SNP markers were generated from the diversity array technology sequence (DArTseq) genotype-by-sequencing (GBS)- approach, in which 2491 SNPs were retained after SNP quality control and used for marker-trait association analysis. Significant phenotypic variation was observed for the traits. Broad-sense heritability ranged from 50.0% (seed width) to 66.4% (seed length). The relationships among the traits were positive and significant. Genome-wide association study (GWAS) using the general linear model (GLM) and the mixed linear model (MLM) approaches identified 12 SNP markers significantly associated with seed size traits across the six test environments. The 12 makers explained 6.5-10.8% of the phenotypic variation. Two markers (29420334|F|0-52:C>G-52:C>G and 29420736|F|0-57:G>T-57:G>T) with pleiotropic effects associated with seed width and seed thickness were found. A candidate gene search identified five significant markers (100026424|F|0-37:C>T-37:C>T, 100041049|F|0-42:G>C-42:G>C, 100034480|F|0-31:C>A-31:C>A, 29420365|F|0-55:C>G-55:C>G, and 29420736|F|0-57:G>T-57:G>T) located close to 43 putative genes whose encoding protein products are known to regulate seed size traits. This study revealed significant makers not previously reported for seed size in AYB and could provide useful information for genomic-assisted breeding in AYB.
Collapse
|
5
|
Abberton M, Paliwal R, Faloye B, Marimagne T, Moriam A, Oyatomi O. Indigenous African Orphan Legumes: Potential for Food and Nutrition Security in SSA. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.708124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Sub-Saharan Africa (SSA), both crop production and the hidden hunger index (HHI, a combination of zinc, iron, and vitamin A deficiency), continue to be worse than the rest of the world. Currently, 31 out of 36 countries of SSA show the highest HHI. At the same time, several studies show climate change as a major constraint to agriculture productivity and a significant threat to SSA food security without significant action regarding adaptation. The food security of SSA is dependent on a few major crops, with many of them providing largely only an energy source in the diet. To address this, crop diversification and climate-resilient crops that have adaptation to climate change can be used and one route toward this is promoting the cultivation of African orphan (neglected or underutilized) crops. These crops, particularly legumes, have the potential to improve food and nutrition security in SSA due to their cultural linkage with the regional food habits of the communities, nutritionally rich food, untapped genetic diversity, and adaptation to harsh climate conditions and poor marginal soils. Despite the wide distribution of orphan legumes across the landscape of SSA, these important crop species are characterized by low yield and decreasing utilization due in part to a lack of improved varieties and a lack of adequate research attention. Genomic-assisted breeding (GAB) can contribute to developing improved varieties that yield more, have improved resilience, and high nutritional value. The availability of large and diverse collections of germplasm is an essential resource for crop improvement. In the Genetic Resources Center of the International Institute of Tropical Agriculture, the collections of orphan legumes, particularly the Bambara groundnut, African yambean, and Kersting's groundnut, have been characterized and evaluated for their key traits, and new collections are being undertaken to fill gaps and to widen the genetic diversity available to underpin breeding that can be further utilized with GAB tools to develop faster and cost-effective climate-resilient cultivars with a high nutrition value for SSA farmers. However, a greater investment of resources is required for applying modern breeding to orphan legume crops if their full potential is to be realized.
Collapse
|
6
|
Avezum L, Rondet E, Mestres C, Achir N, Madode Y, Gibert O, Lefevre C, Hemery Y, Verdeil JL, Rajjou L. Improving the nutritional quality of pulses via germination. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2063329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luiza Avezum
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Eric Rondet
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Christian Mestres
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Nawel Achir
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Yann Madode
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi (LSA/FSA/UAC), Cotonou, Benin
| | - Olivier Gibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Charlotte Lefevre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Youna Hemery
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Jean-Luc Verdeil
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
7
|
Ndoye MS, Burridge J, Bhosale R, Grondin A, Laplaze L. Root traits for low input agroecosystems in Africa: Lessons from three case studies. PLANT, CELL & ENVIRONMENT 2022; 45:637-649. [PMID: 35037274 DOI: 10.1111/pce.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.
Collapse
Affiliation(s)
- Mame S Ndoye
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - James Burridge
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Alexandre Grondin
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Laurent Laplaze
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
8
|
Buernor AB, Kabiru MR, Bechtaoui N, Jibrin JM, Asante M, Bouraqqadi A, Dahhani S, Ouhdouch Y, Hafidi M, Jemo M. Grain Legume Yield Responses to Rhizobia Inoculants and Phosphorus Supplementation Under Ghana Soils: A Meta-Synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:877433. [PMID: 35812914 PMCID: PMC9261782 DOI: 10.3389/fpls.2022.877433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 05/14/2023]
Abstract
A discrete number of studies have been conducted on the effects of rhizobia (Rhz) inoculants, phosphorus (P) management, and combined application of Rhz and P fertilizer on the enhancement of grain legume yield across soils of Ghana and elsewhere. However, the extent to which the various inoculated Rhz strains, P application, and combined application of Rhz + P studies contribute to improving yield, performed on a comprehensive analysis approach, and profit farmers are yet to be understood. This study reviewed different experimental studies conducted on soybean (Glycine max (L.) Merr.), cowpea (Vigna unguiculata [L.] Walp), and groundnut (Arachis hypogaea [L.]) to which Rhz inoculants, P supplements, or Rhz + P combination were applied to improve the yield in Ghana. Multiple-step search combinations of published articles and multivariate analysis computing approaches were used to assess the effects of Rhz inoculation, P application, or both application of Rhz and P on yield variation. The random forest (RF) regression model was further employed to quantify the relative importance of various predictor variables on yield. The meta-analysis results showed that cowpea exhibited the highest (61.7%) and groundnut (19.8%) the lowest average yield change. The RF regression model revealed that the combined application of Rhz and P fertilizer (10.5%) and Rhz inoculation alone (7.8%) were the highest explanatory variables to predict yield variation in soybean. The Rhz + P combination, Rhz inoculation, and genotype wang-Kae explained 11.6, 10.02, and 8.04% of yield variability for cowpea, respectively. The yield in the inoculated plants increased by 1.48-, 1.26-, and 1.16-fold when compared to that in the non-inoculated cowpea plants following inoculation with BR 3299, KNUST 1002, and KNUST 1006 strains, respectively. KNUST 1006 strain exhibited the highest yield increase ratio (1.3-fold) in groundnut plants. Inoculants formulation with a viable concentration of 109 cells g-1 and a minimum inoculum rate of 1.0 × 106 cells seed-1 achieved the highest average yield change for soybean but not for cowpea and groundnut. The meta-analysis calls for prospective studies to investigate the minimum rate of bacterial cells required for optimum inoculation responses in cowpea and groundnut.
Collapse
Affiliation(s)
| | - Muhammad Rabiu Kabiru
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Centre for Dryland Agriculture, Bayero University, Kano, Nigeria
| | - Noura Bechtaoui
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | | | - Michael Asante
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute (SARI), Tamale, Ghana
| | | | | | - Yedir Ouhdouch
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Mohamed Hafidi
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- *Correspondence: Martin Jemo
| |
Collapse
|
9
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Improving Bambara Groundnut Production: Insight Into the Role of Omics and Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:836133. [PMID: 35310649 PMCID: PMC8929175 DOI: 10.3389/fpls.2022.836133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
With the rise in the world population, environmental hazards caused by chemical fertilizers, and a decrease in food supply due to global climate change, food security has become very pertinent. In addition, considerable parts of agriculture lands have been lost to urbanization. It has therefore been projected that at the present rate of population increase coupled with the other mentioned factors, available food will not be enough to feed the world. Hence, drastic approach is needed to improve agriculture output as well as human sustainability. Application of environmentally sustainable approach, such as the use of beneficial microbes, and improved breeding of underutilized legumes are one of the proposed sustainable ways of achieving food security. Microbiome-assisted breeding in underutilized legumes is an untapped area with great capabilities to improve food security. Furthermore, revolution in genomics adaptation to crop improvement has changed the approach from conventional breeding to more advanced genomic-assisted breeding on the host plant and its microbiome. The use of rhizobacteria is very important to improving crop yield, especially rhizobacteria from legumes like Bambara groundnut (BGN). BGN is an important legume in sub-Saharan Africa with high ability to tolerate drought and thrive well in marginalized soils. BGN and its interaction with various rhizobacteria in the soil could play a vital role in crop production and protection. This review focus on the importance of genomics application to BGN and its microbiome with the view of setting a potential blueprint for improved BGN breeding through integration of beneficial bacteria.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- Division of Agrometeorology, Agricultural Research Council, Natural Resources and Engineering, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
10
|
Aina A, Garcia-Oliveira AL, Ilori C, Chang PL, Yusuf M, Oyatomi O, Abberton M, Potter D. Predictive genotype-phenotype relations using genetic diversity in African yam bean (Sphenostylis stenocarpa (Hochst. ex. A. Rich) Harms). BMC PLANT BIOLOGY 2021; 21:547. [PMID: 34800977 PMCID: PMC8605586 DOI: 10.1186/s12870-021-03302-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND African Yam Bean (AYB) is an understudied and underutilized tuberous legume of tropical West and Central African origin. In these geographical regions, both seeds and tubers of AYB are important components of people's diets and a potential target as a nutritional security crop. The understanding of the genetic diversity among AYB accessions is thus an important component for both conservation and potential breeding programs. RESULTS In this study, 93 AYB accessions were obtained from the International Institute of Tropical Agriculture (IITA) genebank and genotyped using 3722 SNP markers based on Restriction site-Associated DNA sequencing (RAD-Seq). Genetic data was analysed using multiple clustering methods for better understanding the distribution of genetic diversity across the population. Substantial genetic variability was observed in the present set of AYB accessions and different methodologies demonstrated that these accessions are divided into three to four main groups. The accessions were also analysed for important agronomic traits and successfully associated with their genetic clusters where great majority of accessions shared a similar phenotype. CONCLUSIONS To our knowledge, this is the first study on predicting genotypic-phenotypic diversity relationship analysis in AYB. From a breeding perspective, we were able to identify specific diverse groups with precise phenotype such as seed or both seed and tuber yield purpose accessions. These results provide novel and important insights to support the utilization of this germplasm in AYB breeding programs.
Collapse
Affiliation(s)
- Ademola Aina
- University of Ibadan, Ibadan, Nigeria
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Ana Luísa Garcia-Oliveira
- Excellence in Breeding (EiB), CIMMYT-ICRAF, UN Av., Nairobi, Kenya.
- Dept. Mol. Biology, Biotechnology & Bioinformatics, CCS Haryana Agricultural University, Hisar, Haryana, India.
| | | | - Peter L Chang
- University of California, Davis, USA
- University of Southern California, Los Angeles, USA
| | - Muyideen Yusuf
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olaniyi Oyatomi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Michael Abberton
- International Institute of Tropical Agriculture, Ibadan, Nigeria.
| | | |
Collapse
|
11
|
Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean ( Sphenostylis stenocarpa Hochst. Ex A. Rich.). Heliyon 2021; 7:e08481. [PMID: 34901510 PMCID: PMC8642607 DOI: 10.1016/j.heliyon.2021.e08481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.
Collapse
Affiliation(s)
- Olubusayo O. Oluwole
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Oluwadurotimi S. Aworunse
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Ademola I. Aina
- Department of Crop Protection and Environmental Biology, University of Ibadan, Oyo State, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Jacob O. Popoola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Olaniyi A. Oyatomi
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Michael T. Abberton
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| |
Collapse
|
12
|
Olanrewaju OS, Oyatomi O, Babalola OO, Abberton M. GGE Biplot Analysis of Genotype × Environment Interaction and Yield Stability in Bambara Groundnut. AGRONOMY 2021; 11:1839. [PMID: 0 DOI: 10.3390/agronomy11091839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant breeding and agricultural research, biplot analysis has become an important statistical technique. The goal of this study was to find the winning genotype(s) for the test settings in a part of the Southwest region of Nigeria, as well as to investigate the nature and extent of genotype × environment interaction (GEI) effects on Bambara groundnut (BGN) production. The experiment was carried out in four environments (two separate sites, Ibadan and Ikenne, for two consecutive years, 2018 and 2019) with ninety-five BGN accessions. According to the combined analysis of variance over environments, genotypes and GEI both had a substantial (p < 0.001) impact on BGN yield. The results revealed that BGN accessions performed differently in different test conditions, indicating that the interaction was crossover in nature. The results revealed that BGN accessions performed differently in different test conditions, indicating that the interaction was crossover in nature. To examine and show the pattern of the interaction components, biplots with the genotype main effect and genotype × environment interaction (GEI) were used. The first two PCs explained 80% of the total variation of the GGE model (i.e., G + GE) (PC1 = 48.59%, PC2 = 31.41%). The accessions that performed best in each environment based on the “which-won-where” polygon were TVSu-2031, TVSu-1724, TVSu-1742, TVSu-2022, TVSu-1943, TVSu-1892, TVSu-1557, TVSu-2060, and TVSu-2017. Among these accessions, TVSu-2017, TVSu-1557, TVSu-2060, TVSu-1892, and TVSu-1943 were among the highest-yielding accessions on the field. The adaptable accessions were TVSu-1763, TVSu-1899, TVSu-2019, TVSu-1898, TVSu-1957, TVSu-2021, and TVSu-1850, and the stable accessions were TVSu-1589, TVSu-1905, and TVSu-2048. In terms of discriminating and representativeness for the environments, Ibadan 2019 is deemed to be a superior environment. The selected accessions are recommended as parental lines in breeding programs for grain yield improvement in Ibadan or Ikenne or similar agro-ecological zones.
Collapse
|
13
|
Aida B, Sihem T, Ines B, Hatem L. Biochemical variability and functional properties of cowpea landraces grown in Hoggar: the Algerian arid region. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Olanrewaju OS, Oyatomi O, Babalola OO, Abberton M. Breeding Potentials of Bambara Groundnut for Food and Nutrition Security in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:798993. [PMID: 35069656 PMCID: PMC8768941 DOI: 10.3389/fpls.2021.798993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 05/22/2023]
Abstract
Constant production of quality food should be a norm in any community, but climate change, increasing population, and unavailability of land for farming affect food production. As a result, food scarcity is affecting some communities, especially in the developing world. Finding a stable solution to this problem is a major cause of concern for researchers. Synergistic application of molecular marker techniques with next generation sequencing (NGS) technologies can unlock the potentials hidden in most crop genomes for improving yield and food availability. Most crops such as Bambara groundnut (BGN), Winged bean, and African yam bean are underutilized. These underutilized crops can compete with the major crops such as cowpea, soybean, maize, and rice, in areas of nutrition, ability to withstand drought stress, economic importance, and food production. One of these underutilized crops, BGN [Vigna subterranea (L.), Verdc.], is an indigenous African legume and can survive in tropical climates and marginal soils. In this review, we focus on the roles of BGN and the opportunities it possesses in tackling food insecurity and its benefits to local farmers. We will discuss BGN's potential impact on global food production and how the advances in NGS technologies can enhance its production.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Genetic Resources Center (GRC), International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Olaniyi Oyatomi
- Genetic Resources Center (GRC), International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Michael Abberton
- Genetic Resources Center (GRC), International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- *Correspondence: Michael Abberton,
| |
Collapse
|
15
|
Tan XL, Azam-Ali S, Goh EV, Mustafa M, Chai HH, Ho WK, Mayes S, Mabhaudhi T, Azam-Ali S, Massawe F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front Nutr 2020; 7:601496. [PMID: 33363196 PMCID: PMC7758284 DOI: 10.3389/fnut.2020.601496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Rapid population growth, climate change, intensive monoculture farming, and resource depletion are among the challenges that threaten the increasingly vulnerable global agri-food system. Heavy reliance on a few major crops is also linked to a monotonous diet, poor dietary habits, and micronutrient deficiencies, which are often associated with diet-related diseases. Diversification-of both agricultural production systems and diet-is a practical and sustainable approach to address these challenges and to improve global food and nutritional security. This strategy is aligned with the recommendations from the EAT-Lancet report, which highlighted the urgent need for increased consumption of plant-based foods to sustain population and planetary health. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized African legume, has the potential to contribute to improved food and nutrition security, while providing solutions for environmental sustainability and equity in food availability and affordability. This paper discusses the potential role of Bambara groundnut in diversifying agri-food systems and contributing to enhanced dietary and planetary sustainability, with emphasis on areas that span the value chain: from genetics, agroecology, nutrition, processing, and utilization, through to its socioeconomic potential. Bambara groundnut is a sustainable, low-cost source of complex carbohydrates, plant-based protein, unsaturated fatty acids, and essential minerals (magnesium, iron, zinc, and potassium), especially for those living in arid and semi-arid regions. As a legume, Bambara groundnut fixes atmospheric nitrogen to improve soil fertility. It is resilient to adverse environmental conditions and can yield on poor soil. Despite its impressive nutritional and agroecological profile, the potential of Bambara groundnut in improving the global food system is undermined by several factors, including resource limitation, knowledge gap, social stigma, and lack of policy incentives. Multiple research efforts to address these hurdles have led to a more promising outlook for Bambara groundnut; however, there is an urgent need to continue research to realize its full potential.
Collapse
Affiliation(s)
- Xin Lin Tan
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Susan Azam-Ali
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Ee Von Goh
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Maysoun Mustafa
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hui Hui Chai
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wai Kuan Ho
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Sean Mayes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Tafadzwanashe Mabhaudhi
- Center for Transformative Agricultural and Food Systems, School of Agricultural, Earth & Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Sayed Azam-Ali
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Festo Massawe
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|