1
|
Lee DH, Lee HS, Choi MS, Parys K, Honda K, Kondoh Y, Lee JM, Edelbacher N, Heo G, Enugutti B, Osada H, Shirasu K, Belkhadir Y. Reprogramming of flagellin receptor responses with surrogate ligands. Nat Commun 2024; 15:9811. [PMID: 39532858 PMCID: PMC11557590 DOI: 10.1038/s41467-024-54271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Receptor kinase (RK) families process information from small molecules, short peptides, or glycan ligands to regulate core cellular pathways in plants. To date, whether individual plant RKs are capable of processing signals from distinct types of ligands remains largely unexplored. Addressing this requires the discovery of structurally unrelated ligands that engage the same receptor. Here, we focus on FLAGELLIN-SENSING 2 (FLS2), an RK that senses a peptide of bacterial flagellin to activate antibacterial immunity in Arabidopsis. We interrogate >20,000 potential interactions between small molecules and the sensory domain of FLS2 using a large-scale reverse chemical screen. We discover two small molecules that interact with FLS2 in atypical ways. The surrogate ligands weakly activate the receptor to drive a functional antibacterial response channeled via unusual gene expression programs. Thus, chemical probes acting as biased ligands can be exploited to discover unexpected levels of output flexibility in RKs signal transduction.
Collapse
Grants
- I 3654 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
- LS17-047 Vienna Science and Technology Fund (Wiener Wissenschafts-, Forschungs- und Technologiefonds)
- NRF-2021R1A6A3A03039464 National Research Foundation of Korea (NRF)
- JP21H04720 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Min-Soo Choi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Katarzyna Parys
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Faculty of Biology, Genetics, University of Munich (LMU), Martinsried, Germany
| | - Kaori Honda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasumitsu Kondoh
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Natalie Edelbacher
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Geon Heo
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Balaji Enugutti
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- University of Shizuoka, Shizuoka, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Douar Ifraden, Residence Taghazout Ocean #13, Taghazout, Morocco.
| |
Collapse
|
2
|
Nakagawa A, Sepuru KM, Yip SJ, Seo H, Coffin CM, Hashimoto K, Li Z, Segawa Y, Iwasaki R, Kato H, Kurihara D, Aihara Y, Kim S, Kinoshita T, Itami K, Han SK, Murakami K, Torii KU. Chemical inhibition of stomatal differentiation by perturbation of the master-regulatory bHLH heterodimer via an ACT-Like domain. Nat Commun 2024; 15:8996. [PMID: 39443460 PMCID: PMC11500415 DOI: 10.1038/s41467-024-53214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Selective perturbation of protein interactions with chemical compounds enables dissection and control of developmental processes. Differentiation of stomata, cellular valves vital for plant growth and survival, is specified by the basic-helix-loop-helix (bHLH) heterodimers. Harnessing a new amination reaction, we here report a synthesis, derivatization, target identification, and mode of action of an atypical doubly-sulfonylated imidazolone, Stomidazolone, which triggers stomatal stem cell arrest. Our forward chemical genetics followed by biophysical analyses elucidates that Stomidazolone directly binds to the C-terminal ACT-Like (ACTL) domain of MUTE, a master regulator of stomatal differentiation, and perturbs its heterodimerization with a partner bHLH, SCREAM in vitro and in plant cells. On the other hand, Stomidazolone analogs that are biologically inactive do not bind to MUTE or disrupt the SCREAM-MUTE heterodimers. Guided by structural docking modeling, we rationally design MUTE with reduced Stomidazolone binding. These engineered MUTE proteins are fully functional and confer Stomidazolone resistance in vivo. Our study identifies doubly-sulfonylated imidazolone as a direct inhibitor of the stomatal master regulator, further expanding the chemical space for perturbing bHLH-ACTL proteins to manipulate plant development.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Shu Jan Yip
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hyemin Seo
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Calvin M Coffin
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kota Hashimoto
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Zixuan Li
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan
| | - Stephanie Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Kiriyama H, Kinoshita SN, Hayashi Y, Honda R, Kasuga S, Kinoshita T, Irieda H, Ohkanda J. Fungal toxin fusicoccin enhances plant growth by upregulating 14-3-3 interaction with plasma membrane H +-ATPase. Sci Rep 2024; 14:23431. [PMID: 39379425 PMCID: PMC11461981 DOI: 10.1038/s41598-024-73979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Fusicoccin-A (FC-A) is a diterpene glucoside produced by a pathogenic fungus. Since its discovery, FC-A has been widely recognized as a phytotoxin that induces stomatal opening and leaf wilting, eventually leading to plant death. In this study, we present the first evidence that FC-A enhances plant growth by stabilizing the protein-protein interaction between plasma membrane (PM) H+-ATPase and 14-3-3 in guard cells. Long-term treatment of Arabidopsis plants with FC-A resulted in ~ 30% growth enhancement. Structurally similar fusicoccin-J (FC-J) showed a similar degree of growth-promotion activity as FC-A, whereas the more hydrophilic fusicoccin-H (FC-H) exhibited no effect on plant growth, indicating that the enhancement of plant growth observed with FC-A and FC-J involves upregulation of the protein-protein interaction between PM H+-ATPase and 14-3-3 in guard cells, which promotes stomatal opening and photosynthesis.
Collapse
Grants
- 22K19106 Japan Society for the Promotion of Science
- 19K05992 Japan Society for the Promotion of Science
- 20H05687 Japan Society for the Promotion of Science
- 20H04769 Ministry of Education, Culture, Sports, Science and Technology
- 20H05910 Ministry of Education, Culture, Sports, Science and Technology
- LEADER Ministry of Education, Culture, Sports, Science and Technology
- University Research Administration Fund Shinshu University
- 2021 Japan Society for Bioscience, Biotechnology, and Agrochemistry
Collapse
Affiliation(s)
- Hironaru Kiriyama
- Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, 399-4598, Nagano, Japan
| | - Satoru N Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuki Hayashi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Rikako Honda
- Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, 399-4598, Nagano, Japan
| | - Shigemitsu Kasuga
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami- Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan.
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami- Minowa, Kami-Ina, Nagano, 399-4598, Japan.
| |
Collapse
|
4
|
Lang PLM, Erberich JM, Lopez L, Weiß CL, Amador G, Fung HF, Latorre SM, Lasky JR, Burbano HA, Expósito-Alonso M, Bergmann DC. Century-long timelines of herbarium genomes predict plant stomatal response to climate change. Nat Ecol Evol 2024; 8:1641-1653. [PMID: 39117952 PMCID: PMC11383800 DOI: 10.1038/s41559-024-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2024] [Indexed: 08/10/2024]
Abstract
Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO2 concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.
Collapse
Affiliation(s)
- Patricia L M Lang
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Joel M Erberich
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lua Lopez
- Department of Biological Sciences, California State University San Bernardino, San Bernardino, CA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gabriel Amador
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah F Fung
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Moisés Expósito-Alonso
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Tang X, Chen M, Li X, Zhang X, Wang P, Xu Y, Li J, Qin Z. Synthesis, Plant Growth Regulatory Activity, and Transcriptome Analysis of Novel Opabactin Analogs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597654 DOI: 10.1021/acs.jafc.3c09429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone, and its analogs have been found to enhance plant resistance to various biotic and abiotic stresses, particularly drought, by activating the ABA signaling pathway. This study used a combination of structure-directed design and molecular docking screening methods to synthesize a novel series of opabactin (OP) analogs. Among them, compounds 4a-4d and 5a showed comparable or superior activity to OP in bioassays, including seed germination and seedling growth inhibition in A. thaliana and rice, stomatal closure, and drought resistance in wheat and soybean. Further transcriptome analysis revealed distinct mechanisms of action between compound 4c and iso-PhABA in enhancing drought tolerance in A. thaliana. These findings highlight the application prospect of 4c and its analogs in agricultural cultivation, particularly in drought resistance. Additionally, they provide new insights into the mechanisms by which different ABA receptor agonists enhance drought resistance.
Collapse
Affiliation(s)
- Xianjun Tang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Minghui Chen
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaobin Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing 100193, China
| | | | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Aihara Y, Maeda B, Goto K, Takahashi K, Nomoto M, Toh S, Ye W, Toda Y, Uchida M, Asai E, Tada Y, Itami K, Sato A, Murakami K, Kinoshita T. Identification and improvement of isothiocyanate-based inhibitors on stomatal opening to act as drought tolerance-conferring agrochemicals. Nat Commun 2023; 14:2665. [PMID: 37188667 DOI: 10.1038/s41467-023-38102-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.
Collapse
Affiliation(s)
- Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Kanna Goto
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Nomoto
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Shigeo Toh
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Environmental Bioscience, Meijo University, Nagoya, Japan
| | - Wenxiu Ye
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Yosuke Toda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Phytometrics Co., Ltd., Hamamatsu, Shizuoka, 435-0036, Japan
| | - Mami Uchida
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Eri Asai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan.
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
7
|
Mussali-Galante P, Santoyo-Martínez M, Castrejón-Godínez ML, Breton-Deval L, Rodríguez-Solis A, Valencia-Cuevas L, Tovar-Sánchez E. The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38982-38999. [PMID: 36595178 DOI: 10.1007/s11356-022-24904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
As a result of mining activities, waste of different types is generated. One example is mine tailings that contain potentially toxic elements such as heavy metals that negatively impact the environment and human health. Hence, developing treatments to guarantee its efficient elimination from the environment is necessary. Among these treatments, phytoremediation takes advantage of the potential of different plant species, to remove heavy metals from polluted sites. Gliricidia sepium is a tree that grows up to 15 m high and distributed from southern Mexico to Central America. This study evaluates the heavy metal bioaccumulation capacity in roots and leaves, and the effect of such bioaccumulation on fifteen macro- and one micro-morphological characters of G. sepium growing during 360 days in control, and in mine tailing substrates. G. sepium individuals growing on the exposed substrate registered the following average heavy metal bioaccumulation pattern in the roots: Fe > Pb > Zn > Cu, while in the leaf tissue, the bioaccumulation pattern was Cu > Fe > Pb > Zn. Macro- and micro-morphological characters evaluated in G. sepium decreased in plants exposed to metals. The translocation factor showed that Cu and Pb registered average values greater than 1. In conclusion, G. sepium is a species with potential for the phytoremediation of soils contaminated with Fe, Cu, and Pb, and for phytostabilizing soils polluted with Fe, Pb, Zn, and Cu, along with its ability to establish itself and turn into an abundant plant species in polluted sites, its capacity to bioaccumulate heavy metals in roots and leaves, and its high rate of HM translocation.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Miguel Santoyo-Martínez
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad S/N, Col. Chamilpa, C.P. 62210. Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez-Solis
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Leticia Valencia-Cuevas
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico.
| |
Collapse
|
8
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
9
|
Takahashi Y, Bosmans KC, Hsu PK, Paul K, Seitz C, Yeh CY, Wang YS, Yarmolinsky D, Sierla M, Vahisalu T, McCammon JA, Kangasjärvi J, Zhang L, Kollist H, Trac T, Schroeder JI. Stomatal CO 2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4. SCIENCE ADVANCES 2022; 8:eabq6161. [PMID: 36475789 PMCID: PMC9728965 DOI: 10.1126/sciadv.abq6161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 05/12/2023]
Abstract
The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.
Collapse
Affiliation(s)
- Yohei Takahashi
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Krystal C. Bosmans
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Po-Kai Hsu
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Dmitry Yarmolinsky
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Li Zhang
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Thien Trac
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
10
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
11
|
Ye W, Dong J, Kinoshita T. Editorial: Stomatal Biology and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:848811. [PMID: 35222499 PMCID: PMC8873178 DOI: 10.3389/fpls.2022.848811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Wenxiu Ye
- Shanghai Collaborative Innovation Center of Agri-Seeds, Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecule, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Abstract
Abscisic acid (ABA) is recognized as the key hormonal regulator of plant stress physiology. This phytohormone is also involved in plant growth and development under normal conditions. Over the last 50 years the components of ABA machinery have been well characterized, from synthesis to molecular perception and signaling; knowledge about the fine regulation of these ABA machinery components is starting to increase. In this article, we review a particular regulation of the ABA machinery that comes from the plant circadian system and extends to multiple levels. The circadian clock is a self-sustained molecular oscillator that perceives external changes and prepares plants to respond to them in advance. The circadian system constitutes the most important predictive homeostasis mechanism in living beings. Moreover, the circadian clock has several output pathways that control molecular, cellular and physiological downstream processes, such as hormonal response and transcriptional activity. One of these outputs involves the ABA machinery. The circadian oscillator components regulate expression and post-translational modification of ABA machinery elements, from synthesis to perception and signaling response. The circadian clock establishes a gating in the ABA response during the day, which fine tunes stomatal closure and plant growth response.
Collapse
|
13
|
Wang T, Ye W, Wang Y, Zhang M, Aihara Y, Kinoshita T. Protease Inhibitor-Dependent Inhibition of Light-Induced Stomatal Opening. FRONTIERS IN PLANT SCIENCE 2021; 12:735328. [PMID: 34567048 PMCID: PMC8462734 DOI: 10.3389/fpls.2021.735328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Stomata in the epidermis of plants play essential roles in the regulation of photosynthesis and transpiration. Stomata open in response to blue light (BL) by phosphorylation-dependent activation of the plasma membrane (PM) H+-ATPase in guard cells. Under water stress, the plant hormone abscisic acid (ABA) promotes stomatal closure via the ABA-signaling pathway to reduce water loss. We established a chemical screening method to identify compounds that affect stomatal movements in Commelina benghalensis. We performed chemical screening using a protease inhibitor (PI) library of 130 inhibitors to identify inhibitors of stomatal movement. We discovered 17 PIs that inhibited light-induced stomatal opening by more than 50%. Further analysis of the top three inhibitors (PI1, PI2, and PI3; inhibitors of ubiquitin-specific protease 1, membrane type-1 matrix metalloproteinase, and matrix metalloproteinase-2, respectively) revealed that these inhibitors suppressed BL-induced phosphorylation of the PM H+-ATPase but had no effect on the activity of phototropins or ABA-dependent responses. The results suggest that these PIs suppress BL-induced stomatal opening at least in part by inhibiting PM H+-ATPase activity but not the ABA-signaling pathway. The targets of PI1, PI2, and PI3 were predicted by bioinformatics analyses, which provided insight into factors involved in BL-induced stomatal opening.
Collapse
Affiliation(s)
- Tenghua Wang
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Wenxiu Ye
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Maoxing Zhang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|