1
|
Moffa L, Mannino G, Bevilacqua I, Gambino G, Perrone I, Pagliarani C, Bertea CM, Spada A, Narduzzo A, Zizzamia E, Velasco R, Chitarra W, Nerva L. CRISPR/Cas9-driven double modification of grapevine MLO6-7 imparts powdery mildew resistance, while editing of NPR3 augments powdery and downy mildew tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39645650 DOI: 10.1111/tpj.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The implementation of genome editing strategies in grapevine is the easiest way to improve sustainability and resilience while preserving the original genotype. Among others, the Mildew Locus-O (MLO) genes have already been reported as good candidates to develop powdery mildew-immune plants. A never-explored grapevine target is NPR3, a negative regulator of the systemic acquired resistance. We report the exploitation of a cisgenic approach with the Cre-lox recombinase technology to generate grapevine-edited plants with the potential to be transgene-free while preserving their original genetic background. The characterization of three edited lines for each target demonstrated immunity development against Erysiphe necator in MLO6-7-edited plants. Concomitantly, a significant improvement of resilience, associated with increased leaf thickness and specific biochemical responses, was observed in defective NPR3 lines against E. necator and Plasmopara viticola. Transcriptomic analysis revealed that both MLO6-7 and NPR3 defective lines modulated their gene expression profiles, pointing to distinct though partially overlapping responses. Furthermore, targeted metabolite analysis highlighted an overaccumulation of stilbenes coupled with an improved oxidative scavenging potential in both editing targets, likely protecting the MLO6-7 mutants from detrimental pleiotropic effects. Finally, the Cre-loxP approach allowed the recovery of one MLO6-7 edited plant with the complete removal of transgene. Taken together, our achievements provide a comprehensive understanding of the molecular and biochemical adjustments occurring in double MLO-defective grape plants. In parallel, the potential of NPR3 mutants for multiple purposes has been demonstrated, raising new questions on its wide role in orchestrating biotic stress responses.
Collapse
Affiliation(s)
- Loredana Moffa
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - Ivan Bevilacqua
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
| | - Cinzia Margherita Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - Alberto Spada
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020, Legnaro, PD, Italy
| | - Anna Narduzzo
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020, Legnaro, PD, Italy
| | - Elisa Zizzamia
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
2
|
Raghuraman P, Park S. Molecular simulation reveals that pathogenic mutations in BTB/ANK domains of Arabidopsis thaliana NPR1 circumscribe the EDS1-mediated immune regulation. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154345. [PMID: 39353309 DOI: 10.1016/j.jplph.2024.154345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) is a key regulator of the salicylic-acid-mediated immune response caused by pathogens in Arabidopsis thaliana. Mutations C150Y and H334Y in the BTB/ANK domains of NPR1 inhibit the defense response, and transcriptional co-activity with enhanced disease susceptibility 1 (EDS1) has been revealed experimentally. This study examined the conformational changes and reduced NPR1-EDS1 interaction upon mutation using a molecular dynamics simulation. Initially, BTBC150YNPR1 and ANKH334YNPR1 were categorized as pathological mutations rather than others based on sequence conservation. A distant ortholog was used to map the common residues shared among the wild-type because the mutations were highly conserved. Overall, 179 of 373 residues were determining the secondary structures and fold versatility of conformations. In addition, the mutational hotspots Cys150, Asp152, Glu153, Cys155, His157, Cys160, His334, Arg339 and Lys370 were crucial for oligomer-to-monomer exchange. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural displacements engaging in the N-termini α5133-178α7 linker connecting the central ANK regions (α13260-290α14 and α18320-390α22), where prominent long helices (α516) and short helices (α310) replaced with β-turns and loops disrupting hydrogen bonds and salt bridges in both mutants implicating functional regulation and activation. Furthermore, the mutation repositions the intact stability of multiple regions (L13C149-N356α20BTB/ANK-α17W301-E357α21N-ter/coiled-coil) compromising a dynamic interaction of NPR1-EDS1. By unveiling the transitions between the distinct functions of mutational perception, this study paves the way for future investigation to orchestrate additive host-adapted transcriptional reprogramming that controls defense-related regulatory mechanisms of NPR1s in plants.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
3
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
4
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Súnico V, Higuera JJ, Amil-Ruiz F, Arjona-Girona I, López-Herrera CJ, Muñoz-Blanco J, Maldonado-Alconada AM, Caballero JL. FaNPR3 Members of the NPR1-like Gene Family Negatively Modulate Strawberry Fruit Resistance against Colletotrichum acutatum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2261. [PMID: 39204697 PMCID: PMC11360474 DOI: 10.3390/plants13162261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Strawberry fruit is highly appreciated worldwide for its organoleptic and healthy properties. However, this plant is attacked by many pathogenic fungi, which significantly affect fruit production and quality at pre- and post-harvest stages, making chemical applications the most effective but undesirable strategy to control diseases that has been found so far. Alternatively, genetic manipulation, employing plant key genes involved in defense, such as members of the NPR-like gene family, has been successful in many crops to improve resistance. The identification and use of the endogenous counterpart genes in the plant of interest (as it is the case of strawberry) is desirable as it would increase the favorable outcome and requires prior knowledge of their defense-related function. Using RNAi technology in strawberry, transient silencing of Fragaria ananassa NPR3 members in fruit significantly reduced tissue damage after Colletotrichum acutatum infection, whereas the ectopic expression of either FaNPR3.1 or FaNPR3.2 did not have an apparent effect. Furthermore, the ectopic expression of FaNPR3.2 in Arabidopsis thaliana double-mutant npr3npr4 reverted the disease resistance phenotype to Pseudomonas syringe to wild-type levels. Therefore, the results revealed that members of the strawberry FaNPR3 clade negatively regulate the defense response to pathogens, as do their Arabidopsis AtNPR3/AtNPR4 orthologs. Also, evidence was found showing that FaNPR3 members act in strawberry (F. ananassa) as positive regulators of WRKY genes, FaWRKY19 and FaWRKY24; additionally, in Arabidopsis, FaNPR3.2 negatively regulates its orthologous genes AtNPR3/AtNPR4. We report for the first time the functional characterization of FaNPR3 members in F. ananassa, which provides a relevant molecular basis for the improvement of resistance in this species through new breeding technologies.
Collapse
Affiliation(s)
- Victoria Súnico
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - José Javier Higuera
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Research Support Service (SCAI), University of Córdoba, 14071 Córdoba, Spain;
| | - Isabel Arjona-Girona
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain; (I.A.-G.); (C.J.L.-H.)
| | - Carlos J. López-Herrera
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain; (I.A.-G.); (C.J.L.-H.)
| | - Juan Muñoz-Blanco
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Córdoba, Spain
| | - José L. Caballero
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| |
Collapse
|
6
|
Hu L, Mijatovic J, Kong F, Kvitko B, Yang L. Ontogenic stage-associated SA response contributes to leaf age-dependent resistance in Arabidopsis and cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1398770. [PMID: 39135651 PMCID: PMC11317444 DOI: 10.3389/fpls.2024.1398770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024]
Abstract
Introduction As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development. Results Here, we reported that salicylic acid (SA) accumulation and response were temporarily increased during leaf maturation in herbaceous annual Arabidopsis. Leaf primordia undergoing active cell division were insensitive to the elicitor-induced SA response. This age-dependent increase in SA response was not due to prolonged exposure to environmental microbes. Autoimmune mutants with elevated SA levels did not alter the temporal pattern dependent on ontogenic stage. Young Arabidopsis leaves were more susceptible than mature leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor- infection. Finally, we showed a broadly similar pattern in cotton, a woody perennial, where young leaves with reduced SA signaling were preferentially invaded by a Xanthomonas pathogen after leaf surface infection. Discussion Through this work, we provided insights in the SA-mediated ontogenic resistance in Arabidopsis and tomato.
Collapse
Affiliation(s)
| | | | | | - Brian Kvitko
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Zhang Y, Yang Z, Yang Y, Han A, Rehneke L, Ding L, Wei Y, Liu Z, Meng Y, Schäfer P, Shan W. A symbiont fungal effector relocalizes a plastidic oxidoreductase to nuclei to induce resistance to pathogens and salt stress. Curr Biol 2024; 34:2957-2971.e8. [PMID: 38917798 DOI: 10.1016/j.cub.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Yingqi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziran Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiping Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laura Rehneke
- Institute of Phytopathology, Land Use and Nutrition, Research Centre for BioSystems, Justus Liebig University, 35392 Giessen, Germany
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yushu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Patrick Schäfer
- Institute of Phytopathology, Land Use and Nutrition, Research Centre for BioSystems, Justus Liebig University, 35392 Giessen, Germany
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
9
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Zhong Q, Yu J, Wu Y, Yao X, Mao C, Meng X, Ming F. Rice transcription factor OsNAC2 maintains the homeostasis of immune responses to bacterial blight. PLANT PHYSIOLOGY 2024; 195:785-798. [PMID: 38159040 DOI: 10.1093/plphys/kiad683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.
Collapse
Affiliation(s)
- Qun Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiangtao Yu
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Shaanxi 712100, China
| | - Yiding Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
11
|
Ghosh D, Chakraborty S. Targeting NPR1: a strategy went viral. TRENDS IN PLANT SCIENCE 2024; 29:385-387. [PMID: 38135603 DOI: 10.1016/j.tplants.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Non-expressor of pathogenesis-related 1 (NPR1) acts as master regulator of plant immunity by promoting salicylic acid (SA) signalling. Some bacterial and fungal pathogens target NPR1 to inhibit SA-mediated immunity. Recently, Zhang et al. and Liu et al. demonstrated that a diverse spectrum of plant-infecting viruses have evolved distinct counter-defence strategies to weaken NPR1-mediated antiviral defence.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
13
|
Zheng X, Chen H, Deng Z, Wu Y, Zhong L, Wu C, Yu X, Chen Q, Yan S. The tRNA thiolation-mediated translational control is essential for plant immunity. eLife 2024; 13:e93517. [PMID: 38284752 PMCID: PMC10863982 DOI: 10.7554/elife.93517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.
Collapse
Affiliation(s)
- Xueao Zheng
- Hubei Hongshan LaboratoryWuhanChina
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Hanchen Chen
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yujing Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Linlin Zhong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhanChina
| | - Chong Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Xiaodan Yu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| |
Collapse
|
14
|
Zavaliev R, Dong X. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol Cell 2024; 84:131-141. [PMID: 38103555 PMCID: PMC10929286 DOI: 10.1016/j.molcel.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|