1
|
Yang Q, Zhang Z, Wang L, Xing X, Zhou J, Li L. Preparation and Characterization of Metal-Organic Framework Coatings for Improving Protein Crystallization Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2064. [PMID: 37513075 PMCID: PMC10386356 DOI: 10.3390/nano13142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Modifying crystallization plates can significantly impact the success rate and quality of protein crystal growth, making it a helpful strategy in protein crystallography. However, appropriate methods for preparing nano-sized particles with a high specific surface area and strategies for applying these nanoparticles to form suitable coatings on crystallization plate surfaces still need to be clarified. Here, we utilized both an ultrasonic crusher and a high-pressure homogenizer to create a nano metal-organic framework (MOF), specifically HKUST-1, and introduced a solvent evaporation method for producing MOF coatings on 96-well crystallization plates to induce protein crystal growth. The morphology of MOF coatings on the resin surface of the plate well was characterized using optical and scanning electron microscopy. Compared to the control group, crystallization screening experiments on nine proteins confirmed the effectiveness of plates with MOF coatings. Applying MOF coatings to crystallization plates is an easy-to-use, time-efficient, and potent tool for initiating crystallization experiments.
Collapse
Affiliation(s)
- Qin Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiwen Xing
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Long Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
An illustration of optimal selected glycosidase for N-glycoproteins deglycosylation and crystallization. Int J Biol Macromol 2019; 122:265-271. [DOI: 10.1016/j.ijbiomac.2018.10.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 01/11/2023]
|
3
|
Michalska K, Tan K, Chang C, Li H, Hatzos-Skintges C, Molitsky M, Alkire R, Joachimiak A. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1386-95. [PMID: 26524303 PMCID: PMC4629866 DOI: 10.1107/s1600577515016598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/05/2015] [Indexed: 05/22/2023]
Abstract
A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Kemin Tan
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Changsoo Chang
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Hui Li
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | | | - Michael Molitsky
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Randy Alkire
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| |
Collapse
|
4
|
Ielasi FS, Hirtz M, Sekula-Neuner S, Laue T, Fuchs H, Willaert RG. Dip-Pen Nanolithography-Assisted Protein Crystallization. J Am Chem Soc 2014; 137:154-7. [DOI: 10.1021/ja512141k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesco S. Ielasi
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Michael Hirtz
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sylwia Sekula-Neuner
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Thomas Laue
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Harald Fuchs
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Physical
Institute and Center for Nanotechnology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Ronnie G. Willaert
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Wilson WW, Delucas LJ. Applications of the second virial coefficient: protein crystallization and solubility. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:543-54. [PMID: 24817708 PMCID: PMC4014317 DOI: 10.1107/s2053230x1400867x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 11/10/2022]
Abstract
This article begins by highlighting some of the ground-based studies emanating from NASA's Microgravity Protein Crystal Growth (PCG) program. This is followed by a more detailed discussion of the history of and the progress made in one of the NASA-funded PCG investigations involving the use of measured second virial coefficients (B values) as a diagnostic indicator of solution conditions conducive to protein crystallization. A second application of measured B values involves the determination of solution conditions that improve or maximize the solubility of aqueous and membrane proteins. These two important applications have led to several technological improvements that simplify the experimental expertise required, enable the measurement of membrane proteins and improve the diagnostic capability and measurement throughput.
Collapse
Affiliation(s)
| | - Lawrence J Delucas
- Center for Structural Biology, University of Alabama at Birmingham, 1720 Second Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Pechkova E, Bragazzi NL, Nicolini C. Advances in nanocrystallography as a proteomic tool. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:163-91. [PMID: 24985772 DOI: 10.1016/b978-0-12-800453-1.00005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to overcome the difficulties and hurdles too much often encountered in crystallizing a protein with the conventional techniques, our group has introduced the innovative Langmuir-Blodgett (LB)-based crystallization, as a major advance in the field of both structural and functional proteomics, thus pioneering the emerging field of the so-called nanocrystallography or nanobiocrystallography. This approach uniquely combines protein crystallography and nanotechnologies within an integrated, coherent framework that allows one to obtain highly stable protein crystals and to fully characterize them at a nano- and subnanoscale. A variety of experimental techniques and theoretical/semi-theoretical approaches, ranging from atomic force microscopy, circular dichroism, Raman spectroscopy and other spectroscopic methods, microbeam grazing-incidence small-angle X-ray scattering to in silico simulations, bioinformatics, and molecular dynamics, has been exploited in order to study the LB-films and to investigate the kinetics and the main features of LB-grown crystals. When compared to classical hanging-drop crystallization, LB technique appears strikingly superior and yields results comparable with crystallization in microgravity environments. Therefore, the achievement of LB-based crystallography can have a tremendous impact in the field of industrial and clinical/therapeutic applications, opening new perspectives for personalized medicine. These implications are envisaged and discussed in the present contribution.
Collapse
Affiliation(s)
- Eugenia Pechkova
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy
| | - Nicola Luigi Bragazzi
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Claudio Nicolini
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
7
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|
8
|
Yamaguchi H, Maeki M, Yamashita K, Nakamura H, Miyazaki M, Maeda H. Controlling one protein crystal growth by droplet-based microfluidic system. ACTA ACUST UNITED AC 2013; 153:339-46. [DOI: 10.1093/jb/mvt001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chayen NE. High-throughput protein crystallization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 77:1-22. [PMID: 20663479 DOI: 10.1016/s1876-1623(09)77001-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Structural genomics projects have led to great progress in the field of structural biology. Considerable advances have been made in the automation of all stages of the pipeline from clone to structure. This chapter focuses on crystallization that is one of the major bottlenecks in this pipeline. It discusses new developments and describes a variety of techniques for high-throughput screening and optimizing of conditions for crystallization.
Collapse
Affiliation(s)
- Naomi E Chayen
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Li L, Ismagilov RF. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu Rev Biophys 2010; 39:139-58. [PMID: 20192773 DOI: 10.1146/annurev.biophys.050708.133630] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain protein crystals, researchers must search for conditions in multidimensional chemical space. Empirically, thousands of crystallization experiments are carried out to screen various precipitants at multiple concentrations. Microfluidics can manipulate fluids on a nanoliter scale, and it affects crystallization twofold. First, it miniaturizes the experiments that can currently be done on a larger scale and enables crystallization of proteins that are available only in small amounts. Second, it offers unique experimental approaches that are difficult or impossible to implement on a larger scale. Ongoing development of microfluidic techniques and their integration with protein production, characterization, and in situ diffraction promises to accelerate the progress of structural biology.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
11
|
Villaseñor AG, Wong A, Shao A, Garg A, Kuglstatter A, Harris SF. Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:568-76. [PMID: 20445232 DOI: 10.1107/s0907444910005512] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 11/10/2022]
Abstract
A crystal seeding technique is introduced that uses acoustic waves to deliver nanolitre volumes of seed suspension into protein drops. The reduction in delivery volume enables enhanced crystal growth in matrix-seeding experiments without concern for bias from chemical components in the seed-carrying buffer suspension. Using this technique, it was found that while buffer components alone without seed can marginally promote crystal growth in some cases, crystal seeding is far more effective in boosting the number of sparse-matrix conditions that yield protein crystals.
Collapse
Affiliation(s)
- Armando G Villaseñor
- Department of Discovery Technologies, Roche Palo Alto LLC, 3431 Hillview Avenue, Palo Alto, California 94304, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Yang L, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 2010; 27:1469-79. [DOI: 10.1039/c005378c] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wilson WW, Whited G, Payne RW, Henry C, Johnson DH, DeLucas L. Chapter 7 Tools to Enhance Membrane Protein Crystallization. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
High-Throughput Self-Interaction Chromatography: Applications in Protein Formulation Prediction. Pharm Res 2008; 26:296-305. [DOI: 10.1007/s11095-008-9737-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
15
|
Protein crystallization in restricted geometry: advancing old ideas for modern times in structural proteomics. Methods Mol Biol 2008; 426:363-76. [PMID: 18542876 DOI: 10.1007/978-1-60327-058-8_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In the structural genomics period traditional methods for protein crystallization have been eclipsed by automation using batch or vapor diffusion equilibration to find conditions conducive for protein crystal growth. Although many globular and soluble proteins predominantly from prokaryotes have been crystallized and their structures solved by high throughput approaches, the remaining difficult proteins require more systematic and reflective methods combining miniaturization and integration of modern and traditional crystallography techniques. One of these conventional methods is growing crystals in restricted geometry, which is a historically well-known concept and a practical technique under-used by today's crystallographers. This chapter presents practical guidelines to use capillaries for microbatch crystallization screening and counter-diffusion crystallization as valuable techniques to obtain protein crystals in confined volumes. The emphasis in the authors' application is to perform broad-based screening with a microgram amount of protein, optimize crystal growth in a supersaturation gradient, and undergo in situ x-ray data analysis for x-ray crystallography without invasive manipulation. Applications and concepts presented here bring to light future prerequisites for the next generation of automation for structural genomics.
Collapse
|
16
|
Abstract
Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Klaus Strebhardt is at the Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodour-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
17
|
Stöckigt J, Barleben L, Panjikar S, Loris EA. 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:340-55. [PMID: 18280746 DOI: 10.1016/j.plaphy.2007.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Indexed: 05/03/2023]
Abstract
Strictosidine synthase (STR; EC 4.3.3.2) plays a key role in the biosynthesis of monoterpenoid indole alkaloids by catalyzing the Pictet-Spengler reaction between tryptamine and secologanin, leading exclusively to 3alpha-(S)-strictosidine. The structure of the native enzyme from the Indian medicinal plant Rauvolfia serpentina represents the first example of a six-bladed four-stranded beta-propeller fold from the plant kingdom. Moreover, the architecture of the enzyme-substrate and enzyme-product complexes reveals deep insight into the active centre and mechanism of the synthase highlighting the importance of Glu309 as the catalytic residue. The present review describes the 3D-structure and function of R. serpentina strictosidine synthase and provides a summary of the strictosidine synthase substrate specificity studies carried out in different organisms to date. Based on the enzyme-product complex, this paper goes on to describe a rational, structure-based redesign of the enzyme, which offers the opportunity to produce novel strictosidine derivatives which can be used to generate alkaloid libraries of the N-analogues heteroyohimbine type. Finally, alignment studies of functionally expressed strictosidine synthases are presented and the evolutionary aspects of sequence- and structure-related beta-propeller folds are discussed.
Collapse
Affiliation(s)
- Joachim Stöckigt
- College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China.
| | | | | | | |
Collapse
|
18
|
Chayen NE, Saridakis E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 2008; 5:147-53. [DOI: 10.1038/nmeth.f.203] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Stöckigt J, Panjikar S. Structural biology in plant natural product biosynthesis--architecture of enzymes from monoterpenoid indole and tropane alkaloid biosynthesis. Nat Prod Rep 2007; 24:1382-400. [PMID: 18033585 DOI: 10.1039/b711935f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several cDNAs of enzymes catalyzing biosynthetic pathways of plant-derived alkaloids have recently been heterologously expressed, and the production of appropriate enzymes from ajmaline and tropane alkaloid biosynthesis in bacteria allows their crystallization. This review describes the architecture of these enzymes with and without their ligands.
Collapse
Affiliation(s)
- Joachim Stöckigt
- College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, 310058, Hangzhou, China
| | | |
Collapse
|
20
|
Chang VT, Crispin M, Aricescu AR, Harvey DJ, Nettleship JE, Fennelly JA, Yu C, Boles KS, Evans EJ, Stuart DI, Dwek RA, Jones EY, Owens RJ, Davis SJ. Glycoprotein structural genomics: solving the glycosylation problem. Structure 2007; 15:267-73. [PMID: 17355862 PMCID: PMC1885966 DOI: 10.1016/j.str.2007.01.011] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 10/29/2022]
Abstract
Glycoproteins present special problems for structural genomic analysis because they often require glycosylation in order to fold correctly, whereas their chemical and conformational heterogeneity generally inhibits crystallization. We show that the "glycosylation problem" can be solved by expressing glycoproteins transiently in mammalian cells in the presence of the N-glycosylation processing inhibitors, kifunensine or swainsonine. This allows the correct folding of the glycoproteins, but leaves them sensitive to enzymes, such as endoglycosidase H, that reduce the N-glycans to single residues, enhancing crystallization. Since the scalability of transient mammalian expression is now comparable to that of bacterial systems, this approach should relieve one of the major bottlenecks in structural genomic analysis.
Collapse
Affiliation(s)
- Veronica T. Chang
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Max Crispin
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - A. Radu Aricescu
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Joanne E. Nettleship
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Janet A. Fennelly
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Chao Yu
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Kent S. Boles
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward J. Evans
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David I. Stuart
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Raymond A. Dwek
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Raymond J. Owens
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- Corresponding author
| | - Simon J. Davis
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- Corresponding author
| |
Collapse
|
21
|
Capelle MAH, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm 2006; 65:131-48. [PMID: 17107777 DOI: 10.1016/j.ejpb.2006.09.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/01/2006] [Accepted: 09/18/2006] [Indexed: 11/28/2022]
Abstract
The formulation of protein drugs is a difficult and time-consuming process, mainly due to the complexity of protein structure and the very specific physical and chemical properties involved. Understanding protein degradation pathways is essential for the success of a biopharmaceutical drug. The present review concerns the application of high throughput screening techniques in protein formulation development. A protein high throughput formulation (HTF) platform is based on the use of microplates. Basically, the HTF platform consists of two parts: (i) sample preparation and (ii) sample analysis. Sample preparation involves automated systems for dispensing the drug and the formulation ingredients in both liquid and powder form. The sample analysis involves specific methods developed for each protein to investigate physical and chemical properties of the formulations in microplates. Examples are presented of the use of protein intrinsic fluorescence for the analysis of protein aqueous properties (e.g., conformation and aggregation). Different techniques suitable for HTF analysis are discussed and some of the issues concerning implementation are presented with reference to the use of microplates.
Collapse
Affiliation(s)
- Martinus A H Capelle
- Department of Pharmaceutics and Biopharmaceutics, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
22
|
Yura K, Yamaguchi A, Go M. Coverage of whole proteome by structural genomics observed through protein homology modeling database. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2006; 7:65-76. [PMID: 17146617 PMCID: PMC1769342 DOI: 10.1007/s10969-006-9010-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/08/2006] [Indexed: 11/07/2022]
Abstract
We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE ( http://daisy.nagahama-i-bio.ac.jp/Famsbase/ ), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics.
Collapse
Affiliation(s)
- Kei Yura
- Quantum Bioinformatics Team, Center for Computational Science and Engineering, Japan Atomic Energy Agency, Kyoto 619-0215, Japan.
| | | | | |
Collapse
|
23
|
Bhamidi V, Varanasi S, Schall CA. Protein crystal nucleation: is the pair interaction potential the primary determinant of kinetics? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9044-50. [PMID: 16171331 DOI: 10.1021/la050711g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fundamental understanding of protein crystal nucleation facilitates crystallization of biological macromolecules for structure determination and control of crystal size distribution. In the studies presented here, nucleation kinetics of hen egg-white lysozyme crystals were measured at solution conditions that exhibited equal solubility by adjusting pH, temperature, or sodium chloride concentration. It was observed that solution conditions that lead to equal solubility resulted in equal nucleation rates and hence kinetic parameters. Since the solubility of globular proteins correlates with the osmotic second virial coefficient, B(22), an integral measure of the protein pair interaction potential, this observation indicates that the protein pair interaction plays a key role in determining nucleation kinetic parameters.
Collapse
Affiliation(s)
- Venkateswarlu Bhamidi
- Department of Chemical & Environmental Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | | | | |
Collapse
|