1
|
Li B, Chen S, Li P, Luo Q, Gong H. Refractory period modulates the spatiotemporal evolution of cortical spreading depression: a computational study. PLoS One 2014; 9:e84609. [PMID: 24400104 PMCID: PMC3882242 DOI: 10.1371/journal.pone.0084609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Cortical spreading depression (CSD) is a pathophysiological phenomenon, which underlies some neurological disorders, such as migraine and stroke, but its mechanisms are still not completely understood. One of the striking facts is that the spatiotemporal evolution of CSD wave is varying. Observations in experiments reveal that a CSD wave may propagate through the entire cortex, or just bypass some areas of the cortex. In this paper, we have applied a 2D reaction-diffusion equation with recovery term to study the spatiotemporal evolution of CSD. By modulating the recovery rate from CSD in the modeled cortex, CSD waves with different spatiotemporal evolutions, either bypassing some areas or propagating slowly in these areas, were present. Moreover, spiral CSD waves could also be induced in case of the transiently altered recovery rate, i.e. block release from the absolute refractory period. These results suggest that the refractory period contributes to the different propagation patterns of CSD, which may help to interpret the mechanisms of CSD propagation.
Collapse
Affiliation(s)
- Bing Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Kaniecki RG, Landy SH, Taylor FR. Abstracts and Citations. Headache 2012. [DOI: 10.1111/j.1526-4610.2012.02118.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Chapuisat G, Dronne MA, Grenier E, Hommel M, Boissel JP. In silico study of the influence of intensity and duration of blood flow reduction on cell death through necrosis or apoptosis during acute ischemic stroke. Acta Biotheor 2010; 58:171-90. [PMID: 20665072 DOI: 10.1007/s10441-010-9100-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/28/2010] [Indexed: 12/01/2022]
Abstract
Ischemic stroke involves numerous and complex pathophysiological mechanisms including blood flow reduction, ionic exchanges, spreading depressions and cell death through necrosis or apoptosis. We used a mathematical model based on these phenomena to study the influences of intensity and duration of ischemia on the final size of the infarcted area. This model relies on a set of ordinary and partial differential equations. After a sensibility study, the model was used to carry out in silico experiments in various ischemic conditions. The simulation results show that the proportion of apoptotic cells increases when the intensity of ischemia decreases, which contributes to the model validation. The simulation results also show that the influence of ischemia duration on the infarct size is more complicated. They suggest that reperfusion is beneficial when performed in the early stroke but may be either inefficacious or even deleterious when performed later after the stroke onset. This aggravation could be explained by the depolarisation waves which might continue to spread ischemic damage and by the speeding up of the apoptotic process leading to cell death. The effect of reperfusion on cell death through these two phenomena needs to be further studied in order to develop new therapeutic strategies for stroke patients.
Collapse
Affiliation(s)
- Guillemette Chapuisat
- Université Paul Cézanne, Faculté St Jérôme, Case Cour A, av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|
4
|
Boissel JP, Ribba B, Grenier E, Chapuisat G, Dronne MA. Modelling methodology in physiopathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 97:28-39. [PMID: 18199472 DOI: 10.1016/j.pbiomolbio.2007.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diseases are complex systems. Modelling them, i.e. systems physiopathology, is a quite demanding, complicated, multidimensional, multiscale process. As such, in order to achieve the goal of the model and further to optimise a rather-time and resource-consuming process, a relevant and easy to practice methodology is required. It includes guidance for validation. Also, the model development should be managed as a complicated process, along a strategy which has been elaborated in the beginning. It should be flexible enough to meet every case. A model is a representation of the available knowledge. All available knowledge does not have the same level of evidence and, further, there is a large variability of the values of all parameters (e.g. affinity constant or ionic current) across the literature. In addition, in a complex biological system there are always values lacking for a few or sometimes many parameters. All these three aspects are sources of uncertainty on the range of validity of the models and raise unsolved problems for designing a relevant model. Tools and techniques for integrating the parameter range of experimental values, level of evidence and missing data are needed.
Collapse
|