1
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
2
|
Kapoor S, Chatterjee DR, Chowdhury MG, Das R, Shard A. Roadmap to Pyruvate Kinase M2 Modulation - A Computational Chronicle. Curr Drug Targets 2023; 24:464-483. [PMID: 36998144 DOI: 10.2174/1389450124666230330103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Abstract
Pyruvate kinase M2 (PKM2) has surfaced as a potential target for anti-cancer therapy. PKM2 is known to be overexpressed in the tumor cells and is a critical metabolic conduit in supplying the augmented bioenergetic demands of the recalcitrant cancer cells. The presence of PKM2 in structurally diverse tetrameric as well as dimeric forms has opened new avenues to design novel modulators. It is also a truism to state that drug discovery has advanced significantly from various computational techniques like molecular docking, virtual screening, molecular dynamics, and pharmacophore mapping. The present review focuses on the role of computational tools in exploring novel modulators of PKM2. The structural features of various isoforms of PKM2 have been discussed along with reported modulators. An extensive analysis of the structure-based and ligand- based in silico methods aimed at PKM2 modulation has been conducted with an in-depth review of the literature. The role of advanced tools like QSAR and quantum mechanics has been established with a brief discussion of future perspectives.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
3
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
4
|
Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, and MM-PBSA Calculations for the Discovery of Potential Natural SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine. J CHEM-NY 2022. [DOI: 10.1155/2022/7270094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Continuing our antecedent work against COVID-19, a set of 5956 compounds of traditional Chinese medicine have been virtually screened for their potential against SARS-CoV-2 helicase (PDB ID: 5RMM). Initially, a fingerprint study with VXG, the ligand of the target enzyme, disclosed the similarity of 187 compounds. Then, a molecular similarity study declared the most similar 40 compounds. Subsequently, molecular docking studies were carried out to examine the binding modes and energies. Then, the most appropriate 26 compounds were subjected to in silico ADMET and toxicity studies to select the most convenient inhibitors to be: (1R,2S)-ephedrine (57), (1R,2S)-norephedrine (59), 2-(4-(pyrrolidin-1-yl)phenyl)acetic acid (84), 1-phenylpropane-1,2-dione (195), 2-methoxycinnamic acid (246), 2-methoxybenzoic acid (364), (R)-2-((R)-5-oxopyrrolidin-3-yl)-2-phenylacetic acid (405), (Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one (533), 8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone (637), 3-((1R,2S)-2-(dimethylamino)-1-hydroxypropyl)phenol (818), (R)-2-ethyl-4-(1-hydroxy-2-(methylamino)ethyl)phenol (5159), and (R)-2-((1S,2S,5S)-2-benzyl-5-hydroxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol (5168). Among the selected 12 compounds, the metabolites, compound 533 showed the best docking scores. Interestingly, the MD simulation studies for compound 533, the one with the highest docking score, over 100 ns showed its correct binding to SARS-CoV-2 helicase with low energy and optimum dynamics. Finally, MM-PBSA studies showed that 533 bonded favorably to SARS-CoV-2 helicase with a free energy value of −83 kJ/mol. Further, the free energy decomposition study determined the essential amino acid residues that contributed favorably to the binding process. The obtained results give a huge hope to find a cure for COVID-19 through further in vitro and in vivo studies for the selected compounds.
Collapse
|
5
|
Kingdon ADH, Alderwick LJ. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:3708-3719. [PMID: 34285773 PMCID: PMC8258792 DOI: 10.1016/j.csbj.2021.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in 2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently required to combat this growing health emergency. Alongside this, increased knowledge of gene essentiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated. This review will focus on structure-based in silico approaches for drug discovery, covering a range of complexities and computational demands, with associated antimycobacterial examples. This includes molecular docking, molecular dynamic simulations, ensemble docking and free energy calculations. Applications of machine learning onto each of these approaches will be discussed. The need for experimental validation of computational hits is an essential component, which is unfortunately missing from many current studies. The future outlooks of these approaches will also be discussed.
Collapse
Key Words
- CV, collective variable
- Docking
- Drug discovery
- In silico
- LIE, Linear Interaction Energy
- MD, Molecular Dynamic
- MDR, multi-drug resistant
- MMPB(GB)SA, Molecular Mechanics with Poisson Boltzmann (or generalised Born) and Surface Area solvation
- Machine learning
- Mt, Mycobacterium tuberculosis
- Mycobacterium tuberculosis
- PTC, peptidyl transferase centre
- RMSD, root-mean square-deviation
- Tuberculosis, TB
- cMD, Classical Molecular Dynamic
- cryo-EM, cryogenic electron microscopy
- ns, nanosecond
Collapse
Affiliation(s)
- Alexander D H Kingdon
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Moghadam MR, Chen YPP. Tracking Neutrophil Migration in Zebrafish Model Using Multi-Channel Feature Learning. IEEE J Biomed Health Inform 2021; 25:1197-1205. [PMID: 32853155 DOI: 10.1109/jbhi.2020.3019271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tracking cells over time is crucial in the fields of computer vision and biomedical science. Studying neutrophils and their migratory profile is the highly topical fields in inflammation research due to determining role of these cells during immune responses. As neutrophils generally are of various shapes and motion, it remains challenging to track and describe their behaviours from multi-dimensional microscopy datasets. In this study, we propose a robust novel multi-channel feature learning (MCFL) model inspired by deep learning to extract the complex behaviour of neutrophils moved in time lapse images. In this model, the convolutional neural networks along with cell relocation distance and orientation channels learn the robust significant spatial and temporal features of an individual neutrophil. Additionally, we also proposed a new cell tracking framework to detect and track neutrophils in the original time-laps microscopy images, entails sampling, observation, and visualisation functions. Our proposed cell tracking-based-multi channel feature learning method has remarkable performance in rectifying common cell tracking problem compared with state-of the-art methods.
Collapse
|
7
|
Gill SC, Mobley DL. Reversibly Sampling Conformations and Binding Modes Using Molecular Darting. J Chem Theory Comput 2021; 17:302-314. [PMID: 33289558 PMCID: PMC8121195 DOI: 10.1021/acs.jctc.0c00752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sampling multiple binding modes of a ligand in a single molecular dynamics simulation is difficult. A given ligand may have many internal degrees of freedom, along with many different ways it might orient itself in a binding site or across several binding sites, all of which might be separated by large energy barriers. We have developed a novel Monte Carlo move called molecular darting (MolDarting) to reversibly sample between predefined binding modes of a ligand. Here, we couple this with nonequilibrium candidate Monte Carlo (NCMC) to improve acceptance of moves. We apply this technique to a simple dipeptide system, a ligand binding to T4 lysozyme L99A, and ligand binding to HIV integrase to test this new method. We observe significant increases in acceptance compared to uniformly sampling the internal and rotational/translational degrees of freedom in these systems.
Collapse
Affiliation(s)
- Samuel C Gill
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| |
Collapse
|
8
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
9
|
Campos-Gonzalez-Angulo JA, Wiesehan G, Ribeiro RF, Yuen-Zhou J. Computational method for highly constrained molecular dynamics of rigid bodies: Coarse-grained simulation of auxetic two-dimensional protein crystals. J Chem Phys 2020; 152:244102. [DOI: 10.1063/5.0004518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Garret Wiesehan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Raphael F. Ribeiro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Wang AH, Zhang ZC, Li GH. Advances in enhanced sampling molecular dynamics simulations for biomolecules. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- An-hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi-chao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Guo-hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Wagner JR, Demir Ö, Carpenter MA, Aihara H, Harki DA, Harris RS, Amaro RE. Determinants of Oligonucleotide Selectivity of APOBEC3B. J Chem Inf Model 2019; 59:2264-2273. [PMID: 30130104 PMCID: PMC6644697 DOI: 10.1021/acs.jcim.8b00427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
APOBEC3B (A3B) is a prominent source of mutation in many cancers. To date, it has been difficult to capture the native protein-DNA interactions that confer A3B's substrate specificity by crystallography due to the highly dynamic nature of wild-type A3B active site. We use computational tools to restore a recent crystal structure of a DNA-bound A3B C-terminal domain mutant construct to its wild type sequence, and run molecular dynamics simulations to study its substrate recognition mechanisms. Analysis of these simulations reveal dynamics of the native A3Bctd-oligonucleotide interactions, including the experimentally inaccessible loop 1-oligonucleotide interactions. A second series of simulations in which the target cytosine nucleotide was computationally mutated from a deoxyribose to a ribose show a change in sugar ring pucker, leading to a rearrangement of the binding site and revealing a potential intermediate in the binding pathway. Finally, apo simulations of A3B, starting from the DNA-bound open state, experience a rapid and consistent closure of the binding site, reaching conformations incompatible with substrate binding. This study reveals a more realistic and dynamic view of the wild type A3B binding site and provides novel insights for structure-guided design efforts for A3B.
Collapse
Affiliation(s)
- Jeffrey R Wagner
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Harki
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Howard Hughes Medical Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| |
Collapse
|
12
|
Dominguez JL, Knapp B. How peptide/MHC presence affects the dynamics of the LC13 T-cell receptor. Sci Rep 2019; 9:2638. [PMID: 30804417 PMCID: PMC6389892 DOI: 10.1038/s41598-019-38788-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction between T-cell receptors (TCRs) of T-cells and potentially immunogenic peptides presented by MHCs of antigen presenting cells is one of the most important mechanisms of the adaptive human immune system. A large number of structural simulations of the TCR/peptide/MHC system have been carried out. However, to date no study has investigated the differences of the dynamics between free TCRs and pMHC bound TCRs on a large scale. Here we present a study totalling 37 100 ns investigating the LC13 TCR in its free form as well as in complex with HLA-B*08:01 and different peptides. Our results show that the dynamics of the bound and unbound LC13 TCR differ significantly. This is reflected in (a) expected results such as an increased flexibility and increased solvent accessible surface of the CDRs of unbound TCR simulations but also in (b) less expected results such as lower CDR distances and compactness as well as alteration in the hydrogen bond network around CDR3α of unbound TCR simulations. Our study further emphasises the structural flexibility of TCRs and confirms the importance of the CDR3 loops for the adoption to MHC.
Collapse
Affiliation(s)
- Jose Luis Dominguez
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain
| | - Bernhard Knapp
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain.
- Department of Statistics, Protein Informatics Group, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Buthelezi SG, Dirr HW, Chakauya E, Chikwamba R, Martens L, Tsekoa TL, Vandermarliere E, Stoychev SH. The study of degradation mechanisms of glyco-engineered plant produced anti-rabies monoclonal antibodies E559 and 62-71-3. PLoS One 2018; 13:e0209373. [PMID: 30571707 PMCID: PMC6301680 DOI: 10.1371/journal.pone.0209373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative. Rabies mostly affects people that reside in resource-limited areas where there are occasional failures in the cold-chain. These environmental changes may upset the stability of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid of a wide range of biophysical and in silico techniques in order to elucidate their stability and identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The complementarity determining regions (CDR) contributed the most to its instability, more specifically: peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised Met34. The constant region "158SWNSGALTGHTFPAVL175" was also flagged by the special aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The E559 peptides "4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain, were also highly affected by F/T. These residues may serve as good candidates for mutation, in the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe and efficacious antibody-based cocktail treatment against rabies.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Antibodies, Viral/therapeutic use
- Cold Temperature/adverse effects
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Computer Simulation
- Drug Stability
- Drug Storage
- Humans
- Neutralization Tests
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Engineering/methods
- Proteolysis
- Rabies/immunology
- Rabies/therapy
- Rabies/virology
- Rabies virus/immunology
- Reactive Oxygen Species/chemistry
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Sindisiwe G. Buthelezi
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ereck Chakauya
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Rachel Chikwamba
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Lennart Martens
- Unit for Computational Omics and Systems Biology, VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tsepo L. Tsekoa
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| | - Elien Vandermarliere
- Unit for Computational Omics and Systems Biology, VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stoyan H. Stoychev
- Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, South Africa
| |
Collapse
|
14
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
15
|
Wang B, Sun Y, Davis TP, Ke PC, Wu Y, Ding F. Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:11704-11715. [PMID: 30881771 PMCID: PMC6413314 DOI: 10.1021/acssuschemeng.8b01959] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers, a class of polymeric nanoparticles (NPs) with highly-controllable sizes and surface chemistry, are promising candidates for many biomedical applications, including drug and gene delivery, imaging, and inhibition of amyloid aggregation. In circulation, binding of serum proteins with dendritic NPs renders the formation of protein corona and alters the biological identity of the NP core, which may subsequently elicit immunoresponse and cytotoxicity. Understanding the effects of PAMAM size and surface chemistry on serum protein binding is, therefore, crucial to enable their broad biomedical applications. Here, by applying atomistic discrete molecular dynamics (DMD) simulations, we first uncovered the binding of PAMAM with HSA and Ig and detailed the dependences of such binding on PAMAM size and surface modification. Compared to either anionic or cationic surfaces, modifications with neutral phosphorylcholine (PC), polyethylene glycol (PEG), and hydroxyls (OH) significantly reduced binding with proteins. The relatively strong binding between proteins and PAMAM dendrimers with charged surface groups was mainly driven by electrostatic interactions as well as hydrophobic interactions. Using steered DMD (SDMD) simulations, we conducted a force-pulling experiment in silico estimating the critical forces separating PAMAM-protein complexes and deriving the corresponding free energy barriers for dissociation. The SDMD-derived HSA-binding affinities were consistent with existing experimental measurements. Our results highlighted the association dynamics of protein-dendrimer interactions and binding affinities, whose implications range from fundamental nanobio interfacial phenomena to the development of "stealth NPs".
Collapse
Affiliation(s)
- Bo Wang
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yunxiang Sun
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Feng Ding
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| |
Collapse
|
16
|
HTMoL: full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory data. J Comput Aided Mol Des 2018; 32:869-876. [DOI: 10.1007/s10822-018-0141-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
17
|
Jalily Hasani H, Ganesan A, Ahmed M, Barakat KH. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS One 2018; 13:e0191905. [PMID: 29444113 PMCID: PMC5812580 DOI: 10.1371/journal.pone.0191905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel that lead to cardiotoxic effects.
Collapse
Affiliation(s)
- Horia Jalily Hasani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Molecular modeling and docking of protease from Bacillus sp. for the keratin degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ahmed M, Jalily Hasani H, Ganesan A, Houghton M, Barakat K. Modeling the human Na v1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade. Drug Des Devel Ther 2017; 11:2301-2324. [PMID: 28831242 PMCID: PMC5552146 DOI: 10.2147/dddt.s133944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel's selectivity filters to reach the channel's central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed "state-of-the-art" steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure-property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel.
Collapse
Affiliation(s)
| | | | | | - Michael Houghton
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
- Department of Medical Microbiology and Immunology, Katz Centre for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
| |
Collapse
|
20
|
Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH, Neves BJ. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules 2017; 22:E1210. [PMID: 28757583 PMCID: PMC6152227 DOI: 10.3390/molecules22081210] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Medicinal chemists continue to be fascinated by chalcone derivatives because of their simple chemistry, ease of hydrogen atom manipulation, straightforward synthesis, and a variety of promising biological activities. However, chalcones have still not garnered deserved attention, especially considering their high potential as chemical sources for designing and developing new effective drugs. In this review, we summarize current methodological developments towards the design and synthesis of new chalcone derivatives and state-of-the-art medicinal chemistry strategies (bioisosterism, molecular hybridization, and pro-drug design). We also highlight the applicability of computer-assisted drug design approaches to chalcones and address how this may contribute to optimizing research outputs and lead to more successful and cost-effective drug discovery endeavors. Lastly, we present successful examples of the use of chalcones and suggest possible solutions to existing limitations.
Collapse
Affiliation(s)
- Marcelo N Gomes
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Setor Leste Universitário, Goiânia 74605-510, Brazil.
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27955-7568, USA.
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74001-970, Brazil.
| | - Josana C Peixoto
- Programa de Pós-Graduação em Sociedade, Tecnologia e Meio Ambiente, Centro Universitário de Anápolis-UniEVANGÉLICA, Anápolis 75083-515, Brazil.
| | - Lucimar P Rosseto
- Programa de Pós-Graduação em Sociedade, Tecnologia e Meio Ambiente, Centro Universitário de Anápolis-UniEVANGÉLICA, Anápolis 75083-515, Brazil.
| | - Pedro V L Cravo
- Programa de Pós-Graduação em Sociedade, Tecnologia e Meio Ambiente, Centro Universitário de Anápolis-UniEVANGÉLICA, Anápolis 75083-515, Brazil.
- GHTM/Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal.
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Setor Leste Universitário, Goiânia 74605-510, Brazil.
| | - Bruno J Neves
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Setor Leste Universitário, Goiânia 74605-510, Brazil.
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74001-970, Brazil.
- Programa de Pós-Graduação em Sociedade, Tecnologia e Meio Ambiente, Centro Universitário de Anápolis-UniEVANGÉLICA, Anápolis 75083-515, Brazil.
| |
Collapse
|
21
|
Ganesan A, Barakat K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov 2017; 12:407-425. [PMID: 28164720 DOI: 10.1080/17460441.2017.1291628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a global health problem that causes several chronic life-threatening liver diseases. The numbers of people affected by HCV are rising annually. Since 2011, the FDA has approved several anti-HCV drugs; while many other promising HCV drugs are currently in late clinical trials. Areas covered: This review discusses the applications of different computational approaches in HCV drug design. Expert opinion: Molecular docking and virtual screening approaches have emerged as a low-cost tool to screen large databases and identify potential small-molecule hits against HCV targets. Ligand-based approaches are useful for filtering-out compounds with rich physicochemical properties to inhibit HCV targets. Molecular dynamics (MD) remains a useful tool in optimizing the ligand-protein complexes and understand the ligand binding modes and drug resistance mechanisms in HCV. Despite their varied roles, the application of in-silico approaches in HCV drug design is still in its infancy. A more mature application should aim at modelling the whole HCV replicon in its active form and help to identify new effective druggable sites within the replicon system. With more technological advancements, the roles of computer-aided methods are only going to increase several folds in the development of next-generation HCV drugs.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| | - Khaled Barakat
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| |
Collapse
|
22
|
Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 2017; 22:249-269. [DOI: 10.1016/j.drudis.2016.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022]
|
23
|
Ferruz N, Tresadern G, Pineda-Lucena A, De Fabritiis G. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme. Sci Rep 2016; 6:30275. [PMID: 27440438 PMCID: PMC4954947 DOI: 10.1038/srep30275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023] Open
Abstract
Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg(2+) ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg(2+) ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process.
Collapse
Affiliation(s)
- Noelia Ferruz
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Acellera, Barcelona Biomedical Research Park, C Dr Aiguader 88, 08003, Barcelona, Spain
| | - Gary Tresadern
- Research Informatics, Janssen Research and Development, Janssen Cilag S A, Calle Jarama 75, Poligono Industrial, Toledo 45007, Spain
| | | | - Gianni De Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Tomar JS, Peddinti RK. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization. Int J Biol Macromol 2016; 88:102-12. [DOI: 10.1016/j.ijbiomac.2016.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/03/2023]
|
25
|
Abstract
Interest in the application of molecular dynamics (MD) simulations has increased in the field of protein kinase (PK) drug discovery. PKs belong to an important drug target class because they are directly involved in a number of diseases, including cancer. MD methods simulate dynamic biological and chemical events at an atomic level. This information can be combined with other in silico and experimental methods to efficiently target selected receptors. In this review, we present common and advanced methods of MD simulations and we focus on the recent applications of MD-based methodologies that provided significant insights into the elucidation of biological mechanisms involving PKs and into the discovery of novel kinase inhibitors.
Collapse
|
26
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
27
|
Rajasekaran R, Chen YPP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015; 20:958-68. [PMID: 25936844 DOI: 10.1016/j.drudis.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is the most prevalent pathogenic disease in many countries around the world, but there are few drugs available to treat it. Most antileishmanial drugs available are highly toxic, have resistance issues or require hospitalization for their use; therefore, they are not suitable for use in most of the affected countries. Over the past decade, the completion of the genomes of many human pathogens, including that of Leishmania spp., has opened new doors for target identification and validation. Here, we focus on the potential drug targets that can be used for the treatment of leishmaniasis and bring to light how recent technological advances, such as structure-based drug design, structural genomics, and molecular dynamics (MD), can be used to our advantage to develop potent and affordable antileishmanial drugs.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103. Res Microbiol 2015; 166:196-204. [PMID: 25744778 DOI: 10.1016/j.resmic.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
This study investigated the mechanism of arsenic resistance in the diazotrophic bacterium Herbaspirillum sp. GW103 isolated from rhizosphere soil of Phragmites austrails. The isolate Herbaspirillum sp. GW103 exhibited maximum tolerance to arsenic (550 mg/L). Four different arsenate reductase (arsC) genes (arsC1, arsC2, arsC3 and arsC4) were located in the genome of the isolate Herbaspirillum sp. GW103. The expression pattern of the arsC1 differed from other genes. All four types of arsC genes had different protein secondary structures and stereochemical properties. Molecular modeling and structural analysis of arsC genes revealed close structural homology with arsC family proteins from Escherichia coli (PDB ID: 1I9D) and Pseudomonas aeruginosa (PDB ID: 1RW1).
Collapse
|
29
|
Li J, Chen Y, Yang J, Hua Z. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation. Biopolymers 2015; 103:247-59. [DOI: 10.1002/bip.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
- The State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing 210093 China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| | - Jie Yang
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| |
Collapse
|
30
|
Godwin RC, Melvin R, Salsbury FR. Molecular Dynamics Simulations and Computer-Aided Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|