1
|
Remme CA, Odening KE. Commemorating the 1924 Nobel Prize awarded to Willem Einthoven: a century of progress in electrocardiography and arrhythmia research. Europace 2024; 27:euae309. [PMID: 39729542 PMCID: PMC11707386 DOI: 10.1093/europace/euae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024] Open
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, Amsterdam 1105 AZ, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Academic Medical Center, Room K2-104.2, Meibergdreef 11, Amsterdam 1105 AZ, The Netherlands
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
2
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
3
|
Remme CA. Getting to the heart of rhythm: A century of progress. Physiol Rev 2022; 102:1553-1567. [PMID: 35343827 DOI: 10.1152/physrev.00043.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human heart beats over eighty thousand times a day, and the average person's heart may have beaten up to 3 billion times by the age of 80. During the early stages of pregnancy, the heart beat provides the first visual and auditory sign of life of the foetus. Conversely, the first audible sound that the foetus is likely to hear is the heart beat of the mother. How fitting then, that at the "birth" Physiological Reviews the very first article published in 1921 written by Eyster and Meek addressed "The origin and conduction of the heart beat".1 In their insightful review, the authors discussed the landmark discoveries made from the mid-19th century on the electrical function of the heart. Now, a hundred years later, at the start of the next century of Physiological Reviews, an update on the huge progress made in the "exciting" field of cardiac electrophysiology is warranted. Guided by a number of excellent reviews published in Physiological Reviews since 1921 as well as a large body of literature, an overview of the important advancements made on the topic is provided here.
Collapse
Affiliation(s)
- Carol Ann Remme
- Amsterdam UMC, location University of Amsterdam, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Gaur N, Qi XY, Benoist D, Bernus O, Coronel R, Nattel S, Vigmond EJ. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology. PLoS Comput Biol 2021; 17:e1009137. [PMID: 34191797 PMCID: PMC8277015 DOI: 10.1371/journal.pcbi.1009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O’Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic. The pig is an animal commonly used experimentally to study diseases of the heart, as well as investigate therapies to treat them, such as drugs. However, although similar, pigs differ from humans in certain aspects which may mean experimental results do not always directly translate between species. We propose a mathematical model of porcine electrophysiology which can serve as a tool to understand differences between the species and translate responses. Using new measurements along with values from literature, we built a computer model of porcine cardiac myocyte which replicated voltage and calcium behaviour over a range of pacing frequencies. The pig cell had a two-stage calcium release, unlike humans with a single stage. We predict that pigs and humans differ in the type of potassium current block that makes them most susceptible to cardiac arrhythmia. The model we developed can elucidate important differences between human and pig arrhythmia response.
Collapse
Affiliation(s)
- Namit Gaur
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Xiao-Yan Qi
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - David Benoist
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Ruben Coronel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Stanley Nattel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
- * E-mail:
| |
Collapse
|
5
|
Orini M, Taggart P, Bhuva A, Roberts N, Di Salvo C, Yates M, Badiani S, Van Duijvenboden S, Lloyd G, Smith A, Lambiase PD. Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart. Heart Rhythm 2021; 18:1406-1413. [PMID: 33932588 PMCID: PMC8353585 DOI: 10.1016/j.hrthm.2021.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Background Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. Objective The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. Methods In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. Results Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). Conclusion Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.
Collapse
Affiliation(s)
- Michele Orini
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| | - Anish Bhuva
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Neil Roberts
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | - Carmelo Di Salvo
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | - Martin Yates
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | - Sveeta Badiani
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | | | - Guy Lloyd
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | - Andrew Smith
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom
| | - Pier D Lambiase
- Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
6
|
Oliván-Viguera A, Pérez-Zabalza M, García-Mendívil L, Mountris KA, Orós-Rodrigo S, Ramos-Marquès E, Vallejo-Gil JM, Fresneda-Roldán PC, Fañanás-Mastral J, Vázquez-Sancho M, Matamala-Adell M, Sorribas-Berjón F, Bellido-Morales JA, Mancebón-Sierra FJ, Vaca-Núñez AS, Ballester-Cuenca C, Marigil MÁ, Pastor C, Ordovás L, Köhler R, Diez E, Pueyo E. Minimally invasive system to reliably characterize ventricular electrophysiology from living donors. Sci Rep 2020; 10:19941. [PMID: 33203905 PMCID: PMC7673124 DOI: 10.1038/s41598-020-77076-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
Cardiac tissue slices preserve the heterogeneous structure and multicellularity of the myocardium and allow its functional characterization. However, access to human ventricular samples is scarce. We aim to demonstrate that slices from small transmural core biopsies collected from living donors during routine cardiac surgery preserve structural and functional properties of larger myocardial specimens, allowing accurate electrophysiological characterization. In pigs, we compared left ventricular transmural core biopsies with transmural tissue blocks from the same ventricular region. In humans, we analyzed transmural biopsies and papillary muscles from living donors. All tissues were vibratome-sliced. By histological analysis of the transmural biopsies, we showed that tissue architecture and cellular organization were preserved. Enzymatic and vital staining methods verified viability. Optically mapped transmembrane potentials confirmed that action potential duration and morphology were similar in pig biopsies and tissue blocks. Action potential morphology and duration in human biopsies and papillary muscles agreed with published ranges. In both pigs and humans, responses to increasing pacing frequencies and β-adrenergic stimulation were similar in transmural biopsies and larger tissues. We show that it is possible to successfully collect and characterize tissue slices from human myocardial biopsies routinely extracted from living donors, whose behavior mimics that of larger myocardial preparations both structurally and electrophysiologically.
Collapse
Affiliation(s)
- Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Konstantinos A Mountris
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Sofía Orós-Rodrigo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Estel Ramos-Marquès
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | | | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | - Marta Matamala-Adell
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | | | | | | | | | | | | | | | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Ralf Köhler
- Aragón Institute of Health Sciences (IACS), Zaragoza, Spain.,Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza, Argentina
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
7
|
Orini M, Yanni J, Taggart P, Hanson B, Hayward M, Smith A, Zhang H, Colman M, Jones G, Jie X, Dobrzynski H, Boyett MR, Lambiase PD. Mechanistic insights from targeted molecular profiling of repolarization alternans in the intact human heart. Europace 2020; 21:981-989. [PMID: 30753421 PMCID: PMC6545501 DOI: 10.1093/europace/euz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/17/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Joseph Yanni
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, UK
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, UK
| | - Martin Hayward
- Department of Cardiothoracic Surgery, The Heart Hospital, University College London Hospitals, London, UK
| | - Andrew Smith
- Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Henggui Zhang
- Division of Cardiovascular Science, University of Manchester, Manchester, UK.,School of Physics and Astronomy, University of Manchester, Manchester, UK
| | | | - Gareth Jones
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Xiao Jie
- Institute of Cardiovascular Science, University College London, London, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| |
Collapse
|
8
|
Sattler SM, Skibsbye L, Linz D, Lubberding AF, Tfelt-Hansen J, Jespersen T. Ventricular Arrhythmias in First Acute Myocardial Infarction: Epidemiology, Mechanisms, and Interventions in Large Animal Models. Front Cardiovasc Med 2019; 6:158. [PMID: 31750317 PMCID: PMC6848060 DOI: 10.3389/fcvm.2019.00158] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Ventricular arrhythmia and subsequent sudden cardiac death (SCD) due to acute myocardial infarction (AMI) is one of the most frequent causes of death in humans. Lethal ventricular arrhythmias like ventricular fibrillation (VF) prior to hospitalization have been reported to occur in more than 10% of all AMI cases and survival in these patients is poor. Identification of risk factors and mechanisms for VF following AMI as well as implementing new risk stratification models and therapeutic approaches is therefore an important step to reduce mortality in people with high cardiovascular risk. Studying spontaneous VF following AMI in humans is challenging as it often occurs unexpectedly in a low risk subgroup. Large animal models of AMI can help to bridge this knowledge gap and are utilized to investigate occurrence of arrhythmias, involved mechanisms and therapeutic options. Comparable anatomy and physiology allow for this translational approach. Through experimental focus, using state-of-the-art technologies, including refined electrical mapping equipment and novel pharmacological investigations, valuable insights into arrhythmia mechanisms and possible interventions for arrhythmia-induced SCD during the early phase of AMI are now beginning to emerge. This review describes large experimental animal models of AMI with focus on first AMI-associated ventricular arrhythmias. In this context, epidemiology of first AMI, arrhythmogenic mechanisms and various potential therapeutic pharmacological targets will be discussed.
Collapse
Affiliation(s)
- Stefan Michael Sattler
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark.,Medical Department I, University Hospital Grosshadern, LMU Munich, Munich, Germany
| | - Lasse Skibsbye
- Department of Exploratory Toxicology, H. Lundbeck A/S, Copenhagen, Denmark
| | - Dominik Linz
- Medical Department III, Universitätsklinikum des Saarlandes, Homburg, Germany.,Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Anniek Frederike Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Orini M, Taggart P, Lambiase PD. In vivo human sock-mapping validation of a simple model that explains unipolar electrogram morphology in relation to conduction-repolarization dynamics. J Cardiovasc Electrophysiol 2018; 29:990-997. [PMID: 29660191 PMCID: PMC6055721 DOI: 10.1111/jce.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The unipolar electrogram (UEG) provides local measures of cardiac activation and repolarization and is an important translational link between patient and laboratory. A simple theoretical model of the UEG was previously proposed and tested in silico. METHOD AND RESULTS The aim of this study was to use epicardial sock-mapping data to validate the simple model's predictions of unipolar electrogram morphology in the in vivo human heart. The simple model conceptualizes the UEG as the difference between a local cardiac action potential and a position-independent component representing remote activity, which is defined as the average of all action potentials. UEGs were recorded in 18 patients using a multielectrode sock containing 240 electrodes and activation (AT) and repolarization time (RT) were measured using standard definitions. For each cardiac site, a simulated local action potential was generated by adjusting a stylized action potential to fit AT and RT measured in vivo. The correlation coefficient (cc) measuring the morphological similarity between 13,637 recorded and simulated UEGs was cc = 0.89 (0.72-0.95), median (Q1 -Q3 ), for the entire UEG, cc = 0.90 (0.76-0.95) for QRS complexes, and cc = 0.83 (0.58-0.92) for T-waves. QRS and T-wave areas from recorded and simulated UEGs showed cc> 0.89 and cc> 0.84, respectively, indicating good agreement between voltage isochrones maps. Simulated UEGs accurately reproduced the interaction between AT and QRS morphology and between RT and T-wave morphology observed in vivo. CONCLUSIONS Human in vivo whole heart data support the validity of the simple model, which provides a framework for improving the understanding of the UEG and its clinical utility.
Collapse
Affiliation(s)
- Michele Orini
- Department of Mechanical Engineering, University College London, London, United Kingdom.,Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom
| | - Peter Taggart
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Pier D Lambiase
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
10
|
Mechano-electrical feedback in the clinical setting: Current perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:365-375. [DOI: 10.1016/j.pbiomolbio.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
11
|
Orini M, Tinker A, Munroe PB, Lambiase PD. Long-term intra-individual reproducibility of heart rate dynamics during exercise and recovery in the UK Biobank cohort. PLoS One 2017; 12:e0183732. [PMID: 28873397 PMCID: PMC5584807 DOI: 10.1371/journal.pone.0183732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022] Open
Abstract
Background The heart rate (HR) response to exercise provides useful information about the autonomic function and has prognostic value, but its reproducibility over a long period of time, a critical requirement for using it as a clinical biomarker, is undetermined. Aim To determine the intra-individual reproducibility of HR dynamics during sub-maximum exercise and one minute recovery. Methods 1187 individuals from the Cardio physical fitness assessment test of the UK Biobank repeated a standard exercise stress test twice (recall time 34.2 ± 2.8 months) and were prospectively studied. Results 821 individuals complied with inclusion criteria for reproducibility analysis, including peak workload differences between assessments ≤10 W. Intra-individual correlation between HR profile during the first and the second assessment was very high and higher than inter-individual correlation (0.92±0.08 vs 0.87±0.11, p<0.01). Intra-individual correlation of indices describing HR dynamics was: ρ = 0.81 for maximum HR during exercise; ρ = 0.71 for minimum HR during recovery; ρ = 0.70 for HR changes during both exercise and recovery; Intra-individual correlation was higher for these indices of HR dynamics than for resting HR (ρ = 0.64). Bland-Altman plots demonstrated good agreement between HR indices estimated during the first and second assessment. A small but consistent bias was registered for all repeated measurements. The intra-individual consistency of abnormal values was about 60–70%. Conclusions The HR dynamics during exercise and recovery are reproducible over a period of 3 years, with moderate to strong intra-individual reproducibility of abnormal values.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
- * E-mail:
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
| |
Collapse
|
12
|
Spatiotemporal characterization of the transition from sinus rhythm to ventricular fibrillation during an acute ischemic event in the intact human heart by whole-heart sock-mapping. HeartRhythm Case Rep 2017; 3:259-263. [PMID: 28736709 PMCID: PMC5509912 DOI: 10.1016/j.hrcr.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
13
|
Orini M, Taggart P, Lambiase PD. A multivariate time-frequency approach for tracking QT variability changes unrelated to heart rate variability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:924-927. [PMID: 28268475 DOI: 10.1109/embc.2016.7590852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The beat-to-beat variability of the QT interval (QTV) is a marker of ventricular repolarization (VR) dynamics and it has been suggested as an index of sympathetic ventricular outflow and cardiac instability. However, QTV is also affected by RR (or heart rate) variability (RRV), and QTV due to RRV may reduce QTV specificity as a VR marker. Therefore, it would be desirable to separate QTV due to VR dynamics from QTV due to RRV. To do that, previous work has mainly focused on heart rate corrections or time-invariant autoregressive models. This paper describes a novel framework that extends classical multiple inputs/single output theory to the time-frequency (TF) domain to quantify QTV and RRV interactions. Quadratic TF distributions and TF coherence function are utilized to separate QTV into two partial (conditioned) spectra representing QTV related and unrelated to RRV, and to provide an estimates of intrinsic VR dynamics. In a simulation study, a time-varying ARMA model was used to generate signals representing realistic RRV and VR dynamics with controlled instantaneous frequencies and powers. The results demonstrated that the proposed methodology is able to accurately track changes in VR dynamics, with a correlation between theoretical and estimated patterns higher than 0.88. Data from healthy volunteers undergoing a tilt table test were analyzed and representative examples are discussed. Results show that the QTV unrelated to RRV dynamics quickly increased during orthostatic challenge.
Collapse
|
14
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
15
|
Orini M, Taggart P, Srinivasan N, Hayward M, Lambiase PD. Interactions between Activation and Repolarization Restitution Properties in the Intact Human Heart: In-Vivo Whole-Heart Data and Mathematical Description. PLoS One 2016; 11:e0161765. [PMID: 27588688 PMCID: PMC5010207 DOI: 10.1371/journal.pone.0161765] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/11/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The restitution of the action potential duration (APDR) and conduction velocity (CVR) are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood. METHODS This paper provides an experimental and theoretical study of repolarization and excitation restitution properties and their interactions in the intact human epicardium. The interdependence between excitation and repolarization dynamic is studied in 8 patients (14 restitution protocols, 1722 restitution curves) undergoing global epicardial mapping with multi-electrode socks before open heart surgery. A mathematical description of the contribution of both repolarization and conduction dynamics to the steepness of the APDR slope is proposed. RESULTS This study demonstrates that the APDR slope is a function of both activation and repolarization dynamics. At short cycle length, conduction delay significantly increases the APDR slope by interacting with the diastolic interval. As predicted by the proposed mathematical formulation, the APDR slope was more sensitive to activation time prolongation than to the simultaneous shortening of repolarization time. A steep APDR slope was frequently identified, with 61% of all cardiac sites exhibiting an APDR slope > 1, suggesting that a slope > 1 may not necessarily promote electrical instability in the human epicardium. APDR slope did not change for different activation or repolarization times, and it was not a function of local baseline APD. However, it was affected by the spatial organization of electrical excitation, suggesting that in tissue APDR is not a unique function of local electrophysiological properties. Spatial heterogeneity in both activation and repolarization restitution contributed to the increase in the modulated dispersion of repolarization, which for short cycle length was as high as 250 ms. Heterogeneity in conduction velocity restitution can translate into both activation and repolarization dispersion and increase cardiac instability. The proposed mathematical formulation shows an excellent agreement with the experimental data (correlation coefficient r = 0.94) and provides a useful tool for the understanding of the complex interactions between activation and repolarization restitution properties as well as between their measurements.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Neil Srinivasan
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| | - Martin Hayward
- The Heart Hospital, University College London Hospitals, London, United Kingdom
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| |
Collapse
|
16
|
Santos D, Orini M, Zhou X, Bueno-Orovio A, Hanson B, Taggart P, Hayward M, Rodriguez B, Lambiase P. Effects and underlying mechanisms of refractory period pacing on repolarization dynamics in the human heart. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:157-160. [PMID: 28268303 DOI: 10.1109/embc.2016.7590664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Repolarization alternans is related to the initiation of life threatening cardiac arrhythmias. Experimental and computational studies suggest that the abolishment of alternans using dynamic pacing protocols may prevent abnormal heart rhythms. In a recent animal study, refractory period pacing (RPP) on every other beat has shown promising results in alternans reduction. However, the cellular mechanisms underlying this therapy and its efficiency in human patients remain unclear. In this study, in vivo unipolar electrograms acquired during RPP from 240 epicardial sites from one patient were analysed. Current clamp of 18 channels was performed in silico to elucidate the ionic mechanisms underlying action potential modulation by RPP. Its efficacy with positive and negative polarities was tested on a population of 87 calibrated human ventricular models exhibiting alternans. In vivo electrograms showed significant changes in T-wave alternans when applying RPP. In silico, results showed APD shortening for RPP with positive polarity and APD prolongation with RPP negative. Under current clamp protocols, voltage rectification of L-type Ca2+ (ICaL) and inward rectifier K+ (IK1) currents were identified as the key determinants for the observed changes. RPP pacing successfully reduced alternans on the in silico models using a negative polarity stimulus in the short beat.
Collapse
|
17
|
Srinivasan NT, Orini M, Simon RB, Providência R, Khan FZ, Segal OR, Babu GG, Bradley R, Rowland E, Ahsan S, Chow AW, Lowe MD, Taggart P, Lambiase PD. Ventricular stimulus site influences dynamic dispersion of repolarization in the intact human heart. Am J Physiol Heart Circ Physiol 2016; 311:H545-54. [PMID: 27371682 PMCID: PMC5142177 DOI: 10.1152/ajpheart.00159.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Spatial variation of restitution in relation to varying stimulus site is poorly defined in the intact human heart. Repolarization gradients were shown to be dependent on site of activation with epicardial stimulation promoting significant transmural gradients. Steep restitution slopes were predominant in the normal ventricle. The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apicobasal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies, were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1–S2 restitution protocols were performed pacing RVendo apex, LVendo base, and LVepi base. Overall, 725 restitution curves were analyzed, 74% of slopes had a maximum slope of activation recovery interval (ARI) restitution (Smax) > 1 (P < 0.001); mean Smax = 1.76. APD was shorter in the LVepi compared with LVendo, regardless of pacing site (30-ms difference during RVendo pacing, 25-ms during LVendo, and 48-ms during LVepi; 50th quantile, P < 0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77 ms, 50th quantile: P < 0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63 ± 0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope −1.36 ± 1.9 and −0.71 ± 0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI; RT gradients exist that are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be proarrhythmic.
Collapse
Affiliation(s)
- Neil T Srinivasan
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Michele Orini
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ron B Simon
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Rui Providência
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Fakhar Z Khan
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Oliver R Segal
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Girish G Babu
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Richard Bradley
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Edward Rowland
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Syed Ahsan
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Anthony W Chow
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Martin D Lowe
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Pier D Lambiase
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom; and Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
18
|
Orini M, Taggart P, Hayward M, Lambiase PD. Analytical description of the slope of the APD-restitution curve to assess the interacting contribution of conduction and repolarization dynamics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5672-5. [PMID: 26737579 DOI: 10.1109/embc.2015.7319679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The restitution of the action potential duration (APDR) is a mechanism whereby cardiac excitation and relaxation adapt to changes in heart rate. Several studies, mainly carried out in-vitro and in-silico, have demonstrated that a steep APDR curve is associated with increased vulnerability to fatal arrhythmias. However, the mechanisms that link the steepness of the APDR curve to arrhythmogenesis remain undetermined. Although APDR is known to interact with conduction dynamics, few studies have focused on these interactions. In this paper, an analytical expression of the slope of the APDR is derived. This expression explicitly describes the dependency of the slope of the APDR curve on the activation time and/or conduction velocity changes. The study of this expression shows that conduction dynamics are among the main determinants of the slope of the APDR curve. A small absolute increment in the steepness of the activation time restitution slope can cause the steepness of the APDR slope to dramatically increase. Theoretically, the APDR slope quickly diverges to infinity when the increase in activation time matches the decrease in the pacing interval. High density epicardial mapping performed in a patient undergoing open heart surgery, shows excellent agreement between measures of the slope of the APDR curve and its analytical prediction (linear correlation > 0.95). The in-vivo recordings suggest that activation time restitution is the main determinant of the slope of the APDR curve.
Collapse
|
19
|
Orini M, Taggart P, Hayward M, Lambiase P. On how 2∶1 conduction block can induce T-wave alternans in the unipolar intracavitary electrogram: Modelling in-vivo human recordings from an ischemic heart. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5676-9. [PMID: 26737580 DOI: 10.1109/embc.2015.7319680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Repolarization alternans is a marker of increased vulnerability to fatal arrhythmias. At the tissue level, in unipolar electrograms (UEGs) recorded on the myocardium, repolarization alternans is often measured as an alternating change of the T-wave, so called T-wave alternans (TWA). During ischemia, UEG-TWA is used as a marker of cardiac instability and is considered as a key parameter to assess pharmacological strategies. However, during ischemia it is not clear whether UEG-TWA is a sign of repolarization alternans which may promote 2:1 conduction block, or whether it is induced by ongoing regional 2:1 conduction block. In this study, we first show in-vivo human data recorded during an ischemic event that suggest that 2:1 conduction block induces UEG-TWA beyond the region of 2:1 conduction block. We then develop an analytical forward model of the UEG by coupling an analytical description of the cardiac action potential with a theoretical expression of the UEG, where each UEG is the combination of a local and a remote component and noise. With this model, we were able to generate signals that closely resemble UEGs recorded in-vivo, with a maximum correlation ρ > 0.94. Finally, we interrogate the model and demonstrate that whenever 2:1 conduction block is present, UEG-TWA arises as a consequence of alternating imbalance of both the local and remote components of the UEG. The statistical significance of UEG-TWA depends on the interactions between local and remote dynamics and noise.We conclude that in an ischemic model, UEG-TWA is likely to be a sign of 2:1 conduction block, either proximal or distal from the recording site.
Collapse
|
20
|
Prudat Y, Madhvani RV, Angelini M, Borgstom NP, Garfinkel A, Karagueuzian HS, Weiss JN, de Lange E, Olcese R, Kucera JP. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics. J Physiol 2016; 594:2537-53. [PMID: 26563830 DOI: 10.1113/jp271573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Beat-to-beat alternation (alternans) of the cardiac action potential duration is known to precipitate life-threatening arrhythmias and can be driven by the kinetics of voltage-gated membrane currents or by instabilities in intracellular calcium fluxes. To prevent alternans and associated arrhythmias, suitable markers must be developed to quantify the susceptibility to alternans; previous theoretical studies showed that the eigenvalue of the alternating eigenmode represents an ideal marker of alternans. Using rabbit ventricular myocytes, we show that this eigenvalue can be estimated in practice by pacing these cells at intervals varying stochastically. We also show that stochastic pacing permits the estimation of further markers distinguishing between voltage-driven and calcium-driven alternans. Our study opens the perspective to use stochastic pacing during clinical investigations and in patients with implanted pacing devices to determine the susceptibility to, and the type of alternans, which are both important to guide preventive or therapeutic measures. ABSTRACT Alternans of the cardiac action potential (AP) duration (APD) is a well-known arrhythmogenic mechanism. APD depends on several preceding diastolic intervals (DIs) and APDs, which complicates the prediction of alternans. Previous theoretical studies pinpointed a marker called λalt that directly quantifies how an alternating perturbation persists over successive APs. When the propensity to alternans increases, λalt decreases from 0 to -1. Our aim was to quantify λalt experimentally using stochastic pacing and to examine whether stochastic pacing allows discriminating between voltage-driven and Ca(2+) -driven alternans. APs were recorded in rabbit ventricular myocytes paced at cycle lengths (CLs) decreasing progressively and incorporating stochastic variations. Fitting APD with a function of two previous APDs and CLs permitted us to estimate λalt along with additional markers characterizing whether the dependence of APD on previous DIs or CLs is strong (typical for voltage-driven alternans) or weak (Ca(2+) -driven alternans). During the recordings, λalt gradually decreased from around 0 towards -1. Intermittent alternans appeared when λalt reached -0.8 and was followed by sustained alternans. The additional markers detected that alternans was Ca(2+) driven in control experiments and voltage driven in the presence of ryanodine. This distinction could be made even before alternans was manifest (specificity/sensitivity >80% for -0.4 > λalt > -0.5). These observations were confirmed in a mathematical model of a rabbit ventricular myocyte. In conclusion, stochastic pacing allows the practical estimation of λalt to reveal the onset of alternans and distinguishes between voltage-driven and Ca(2+) -driven mechanisms, which is important since these two mechanisms may precipitate arrhythmias in different manners.
Collapse
Affiliation(s)
- Yann Prudat
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Roshni V Madhvani
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nils P Borgstom
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hrayr S Karagueuzian
- Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James N Weiss
- Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Enno de Lange
- Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Muszkiewicz A, Britton OJ, Gemmell P, Passini E, Sánchez C, Zhou X, Carusi A, Quinn TA, Burrage K, Bueno-Orovio A, Rodriguez B. Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:115-27. [PMID: 26701222 PMCID: PMC4821179 DOI: 10.1016/j.pbiomolbio.2015.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
Physiological variability manifests itself via differences in physiological function between individuals of the same species, and has crucial implications in disease progression and treatment. Despite its importance, physiological variability has traditionally been ignored in experimental and computational investigations due to averaging over samples from multiple individuals. Recently, modelling frameworks have been devised for studying mechanisms underlying physiological variability in cardiac electrophysiology and pro-arrhythmic risk under a variety of conditions and for several animal species as well as human. One such methodology exploits populations of cardiac cell models constrained with experimental data, or experimentally-calibrated populations of models. In this review, we outline the considerations behind constructing an experimentally-calibrated population of models and review the studies that have employed this approach to investigate variability in cardiac electrophysiology in physiological and pathological conditions, as well as under drug action. We also describe the methodology and compare it with alternative approaches for studying variability in cardiac electrophysiology, including cell-specific modelling approaches, sensitivity-analysis based methods, and populations-of-models frameworks that do not consider the experimental calibration step. We conclude with an outlook for the future, predicting the potential of new methodologies for patient-specific modelling extending beyond the single virtual physiological human paradigm.
Collapse
Affiliation(s)
- Anna Muszkiewicz
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Oliver J Britton
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Philip Gemmell
- Clyde Biosciences Ltd, West Medical Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Carlos Sánchez
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Xin Zhou
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | | | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom; Mathematical Sciences, Queensland University of Technology, Queensland 4072, Australia; ACEMS, ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Queensland 4072, Australia
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom.
| |
Collapse
|
22
|
Zhou X, Bueno-Orovio A, Orini M, Hanson B, Hayward M, Taggart P, Lambiase PD, Burrage K, Rodriguez B. In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circ Res 2015; 118:266-78. [PMID: 26602864 PMCID: PMC4719495 DOI: 10.1161/circresaha.115.307836] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. OBJECTIVE To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. METHODS AND RESULTS In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600-350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; P<0.01), because of sarcoplasmic reticulum Ca(2+) ATPase pump potentiation caused by frequency-induced increase in intracellular calcium. Large Na(+)/Ca(2+) exchanger current is the main driver in translating Ca(2+) fluctuations into RA. CONCLUSIONS In human in vivo and in silico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na(+)/Ca(2+) exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation.
Collapse
Affiliation(s)
- Xin Zhou
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Alfonso Bueno-Orovio
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Michele Orini
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Ben Hanson
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Martin Hayward
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Peter Taggart
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Pier D Lambiase
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Kevin Burrage
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Blanca Rodriguez
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.).
| |
Collapse
|
23
|
Kohl P, Quinn TA. Novel technologies as drivers of progress in cardiac biophysics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:69-70. [PMID: 25193876 DOI: 10.1016/j.pbiomolbio.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Kohl
- National Heart and Lung Institute, Imperial College London, UK; Department of Computer Science, University of Oxford, UK.
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Canada
| |
Collapse
|
24
|
Villongco CT, Krummen DE, Stark P, Omens JH, McCulloch AD. Patient-specific modeling of ventricular activation pattern using surface ECG-derived vectorcardiogram in bundle branch block. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:305-13. [PMID: 25110279 DOI: 10.1016/j.pbiomolbio.2014.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 10/24/2022]
Abstract
Patient-specific computational models have promise to improve cardiac disease diagnosis and therapy planning. Here a new method is described to simulate left-bundle branch block (LBBB) and RV-paced ventricular activation patterns in three dimensions from non-invasive, routine clinical measurements. Activation patterns were estimated in three patients using vectorcardiograms (VCG) derived from standard 12-lead electrocardiograms (ECG). Parameters of a monodomain model of biventricular electrophysiology were optimized to minimize differences between the measured and computed VCG. Electroanatomic maps of local activation times measured on the LV and RV endocardial surfaces of the same patients were used to validate the simulated activation patterns. For all patients, the optimal estimated model parameters predicted a time-averaged mean activation dipole orientation within 6.7 ± 0.6° of the derived VCG. The predicted local activation times agreed within 11.5 ± 0.8 ms of the measured electroanatomic maps, on the order of the measurement accuracy.
Collapse
Affiliation(s)
| | - David E Krummen
- Department of Medicine (Cardiology), University of California, San Diego, CA 92093, USA; US Department of Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Paul Stark
- Department of Radiology, University of California, San Diego, CA 92093, USA; US Department of Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; Department of Medicine (Cardiology), University of California, San Diego, CA 92093, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California, La Jolla, CA 92093, USA; Department of Medicine (Cardiology), University of California, San Diego, CA 92093, USA.
| |
Collapse
|
25
|
Livneh A, Kimmel E, Kohut AR, Adam D. Extracorporeal acute cardiac pacing by High Intensity Focused Ultrasound. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:140-53. [DOI: 10.1016/j.pbiomolbio.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|