1
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Xu K, Huang RQ, Wen R, Yang Y, Cheng Y, Chang B. The role of Clec11a in bone construction and remodeling. Front Endocrinol (Lausanne) 2024; 15:1429567. [PMID: 39188913 PMCID: PMC11345164 DOI: 10.3389/fendo.2024.1429567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Rui-qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yao Yang
- Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- School of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
3
|
Anderson MG, Johnson AM, Harrison C, Jones J, Ali A. Influence of perch provision during rearing on activity and musculoskeletal health of pullets. PLoS One 2024; 19:e0307114. [PMID: 39008511 PMCID: PMC11249234 DOI: 10.1371/journal.pone.0307114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Prior research suggests exercise during pullet rearing can mitigate lay-phase bone fractures by strengthening muscles, enhancing balance, and increasing bone mass. This study aimed to confirm that Hy-Line brown pullets with multi-tier perches show increased activity and improved musculoskeletal health. Pullets (n = 810) were randomly allocated to housing systems, either with multi-tier perches (P; n = 15 pens) or without (NP; n = 15 pens), spanning from 0-17 weeks of age. At 5, 11, and 17 weeks, individual birds were meticulously monitored for activity using accelerometers over three consecutive days (n = 90 randomly selected birds/week). At 11 and 17 weeks, 60 birds underwent euthanasia and computed tomography (CT) scans to ascertain tibiotarsal bone mineral density and cross-sectional area measurements. Post-CT scanning, birds were dissected for muscle size, tibiotarsal breaking strength, and tibiotarsal ash percentage measurements. Additionally, serum concentrations of bone-specific alkaline phosphatase and procollagen type 1 N-terminal propeptide were assessed as markers of bone formation (n = 90 birds/week). Pullet group P exhibited heightened vertical activity (P<0.05), with no discernible differences in overall activity (P>0.05) during weeks 5, 11, and 17 compared to group NP. Tibiotarsal bones of P pullets demonstrated superior total and cortical bone mineral density at week 11, alongside increased cortical bone cross-sectional areas and heightened total and cortical bone mineral densities at week 17 (P<0.05) compared to NP pullets. At week 11, P pullets displayed larger leg muscles, including triceps, pectoralis major and minor, and leg muscles at week 17 (P<0.05) compared to NP pullets. Notably, at both weeks, P pullets' tibiae exhibited greater breaking strengths, higher ash percentages, and elevated concentrations of bone-specific alkaline phosphatase and procollagen type 1 N-terminal propeptide compared to NP pullets (P<0.05). The study findings underscore the benefits of providing multi-tier perches for pullets, serving as a valuable tool for enhancing bird activity and musculoskeletal health preceding the lay phase.
Collapse
Affiliation(s)
- Mallory G. Anderson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
| | - Alexa M. Johnson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
| | - Cerano Harrison
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- South Carolina Translational Research Improving Musculoskeletal Health Center, Clemson, SC, United States of America
| | - Jeryl Jones
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- South Carolina Translational Research Improving Musculoskeletal Health Center, Clemson, SC, United States of America
| | - Ahmed Ali
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- Animal Behavior and Management, Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Tan BB, Schwartz NE, Copes LE, Garland T. Effects of long-term voluntary wheel running and selective breeding for wheel running on femoral nutrient canals. J Anat 2024; 244:1015-1029. [PMID: 38303650 PMCID: PMC11095308 DOI: 10.1111/joa.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The nutrient artery provides ~50%-70% of the total blood volume to long bones in mammals. Studying the functional characteristics of this artery in vivo can be difficult and expensive, so most researchers have measured the nutrient foramen, an opening on the outer surface of the bone that served as the entry point for the nutrient artery during development and bone ossification. Others have measured the nutrient canal (i.e., the passage which the nutrient artery once occupied), given that the external dimensions of the foramen do not necessarily remain uniform from the periosteal surface to the medullary cavity. The nutrient canal, as an indicator of blood flow to long bones, has been proposed to provide a link to studying organismal activity (e.g., locomotor behavior) from skeletal morphology. However, although external loading from movement and activity causes skeletal remodeling, it is unclear whether it affects the size or configuration of nutrient canals. To investigate whether nutrient canals can exhibit phenotypic plasticity in response to physical activity, we studied a mouse model in which four replicate high runner (HR) lines have been selectively bred for high voluntary wheel-running behavior. The selection criterion is the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access as young adults (~6-8 weeks old). An additional four lines are bred without selection to serve as controls (C). For this study, 100 female mice (half HR, half C) from generation 57 were split into an active group housed with wheels and a sedentary group housed without wheels for 12 weeks starting at ~24 days of age. Femurs were collected, soft tissues were removed, and femora were micro-computed tomography scanned at a resolution of 12 μm. We then imported these scans into AMIRA and created 3D models of femoral nutrient canals. We tested for evolved differences in various nutrient canal traits between HR and C mice, plastic changes resulting from chronic exercise, and the selection history-by-exercise interaction. We found few differences between the nutrient canals of HR versus C mice, or between the active and sedentary groups. We did find an interaction between selection history and voluntary exercise for the total number of nutrient canals per femur, in which wheel access increased the number of canals in C mice but decreased it in HR mice. Our results do not match those from an earlier study, conducted at generation 11, which was prior to the HR lines reaching selection limits for wheel running. The previous study found that mice from the HR lines had significantly larger total canal cross-sectional areas compared to those from C lines. However, this discrepancy is consistent with studies of other skeletal traits, which have found differences between HR and C mice to be somewhat inconsistent across generations, including the loss of some apparent adaptations with continued selective breeding after reaching a selection limit for wheel-running behavior.
Collapse
Affiliation(s)
- Brandon B Tan
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Lynn E Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, Connecticut, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
5
|
Lee D, Cho IY, Chang WH, Yoo JE, Choi HL, Park J, Shin DW, Han K. Fracture Risk Among Stroke Survivors According to Poststroke Disability Status and Stroke Type. Stroke 2024; 55:1498-1506. [PMID: 38686561 DOI: 10.1161/strokeaha.123.044953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Stroke survivors face physical and cognitive challenges, leading to an increased dependency and a higher fall risk. We aimed to investigate the impact of poststroke disability and stroke type on fracture risk at various sites compared with matched controls. METHODS This retrospective cohort study used data from the Korean National Health Insurance System database (2010-2018), including patients with stroke and 1:1 matched controls. Stroke survivors were grouped based on the presence and severity of their poststroke disability and stroke type. The primary outcome was a newly diagnosed fracture, analyzed by Cox proportional hazard regression analyses adjusting for potential confounders. RESULTS Among 223 358 stroke survivors (mean age, 64.8±10.9 years; 61.2% men), 16 344 fractures occurred during a mean follow-up of 3.7±2.5 years. In matched controls (n=322 161; mean age, 65.4±11.2 years; 61.3% men), 20 398 fractures were identified. Stroke survivors had increased overall fracture risk compared with matched controls (adjusted hazard ratio [aHR], 1.40 [95% CI, 1.37-1.43]). Specifically, hip fracture risk was even greater in stroke survivors (incidence rate per 1000 person-years, 4.7 [95% CI, 4.5-4.8]; aHR, 2.42 [95% CI, 2.30-2.55]) than controls (incidence rate, 2.2 [95% CI, 2.1-2.3]). The risk of vertebral fractures (aHR, 1.29 [95% CI, 1.25-1.34]) and other fractures (aHR, 1.19 [95% CI, 1.15-1.23]) was also higher than that of the control group. Hip fracture risk was the highest among stroke survivors with severe poststroke disability (aHR, 4.82 [95% CI, 4.28-5.42]), although vertebral or other fracture risk was the highest among those with mild poststroke disability. No significant difference in fracture risk was found between hemorrhagic and ischemic stroke survivors when stratified by disability status. CONCLUSIONS Our findings showed increased subsequent fracture risk among stroke survivors, particularly those with poststroke disability and for hip fracture. Bone health assessment and treatment should be emphasized as an essential part of stroke management.
Collapse
Affiliation(s)
- Dagyeong Lee
- Department of Family Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea (D.L.)
| | - In Young Cho
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (I.Y.C., D.W.S.)
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea (I.Y.C., W.H.C., H.L.C., D.W.S.)
| | - Won Hyuk Chang
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea (I.Y.C., W.H.C., H.L.C., D.W.S.)
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (W.H.C.)
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Republic of Korea (J.E.Y.)
| | - Hea Lim Choi
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea (I.Y.C., W.H.C., H.L.C., D.W.S.)
- Department of Family Medicine/Executive Healthcare Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (H.L.C.)
| | - Junhee Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.P.)
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (I.Y.C., D.W.S.)
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea (I.Y.C., W.H.C., H.L.C., D.W.S.)
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea (K.H.)
| |
Collapse
|
6
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang Z, Sim HJ, Liu W, Kim JC, Lee JC, Kook SH, Kim SH. Differential Effects of Endurance Exercise on Musculoskeletal and Hematopoietic Modulation in Old Mice. Aging Dis 2024; 15:755-766. [PMID: 37548936 PMCID: PMC10917547 DOI: 10.14336/ad.2023.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
One of the most important strategies for successful aging is exercise. However, the effect of exercise can differ among individuals, even with exercise of the same type and intensity. Therefore, this study aims to confirm whether endurance training (ETR) has the same health-promoting effects on the musculoskeletal and hematopoietic systems regardless of age. Ten weeks of ETR improved endurance exercise capacity, with increased skeletal muscle mitochondrial enzymes in both young and old mice. In addition, age-related deterioration of muscle fiber size and bone microstructure was improved. The expression levels of myostatin, muscle RING-finger protein-1, and muscle atrophy F-box in skeletal muscle and peroxisome proliferator-activated receptor-γ in the femur increased with age but decreased after ETR. ETR differentially modulated hematopoietic stem cells (HSCs) depending on age; ETR induced HSC quiescence in young mice but caused HSC senescence in old mice. ETR has differential effects on modulation of the musculoskeletal and hematopoietic systems in old mice. In other words, endurance exercise is a double-edged sword for successful aging, and great effort is required to establish exercise strategies for healthy aging.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Cheol Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
8
|
Walle M, Duseja A, Whittier DE, Vilaca T, Paggiosi M, Eastell R, Müller R, Collins CJ. Bone remodeling and responsiveness to mechanical stimuli in individuals with type 1 diabetes mellitus. J Bone Miner Res 2024; 39:85-94. [PMID: 38477745 PMCID: PMC11340785 DOI: 10.1093/jbmr/zjad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 03/14/2024]
Abstract
Type 1 diabetes mellitus (T1DM) has been linked to increased osteocyte apoptosis, local accumulation of mineralized lacunar spaces, and microdamage suggesting an impairment of the mechanoregulation network in affected individuals. Diabetic neuropathy might exacerbate this dysfunction through direct effects on bone turnover, and indirect effects on balance, muscle strength, and gait. However, the in vivo effects of impaired bone mechanoregulation on bone remodeling in humans remain underexplored. This longitudinal cohort study assessed consenting participants with T1DM and varying degree of distal symmetric sensorimotor polyneuropathy (T1DM, n = 20, median age 46.5 yr, eight female) and controls (CTRL; n = 9, median age 59.0 yr, four female) at baseline and 4-yr follow-up. Nerve conduction in participants with T1DM was tested using DPNCheck and bone remodeling was quantified with longitudinal high-resolution peripheral quantitative-computed tomography (HR-pQCT, 82 μm) at the standard distal sites. Local trabecular bone formation (Tb.F) and resorption (Tb.R) sites were captured by implementing 3D rigid image registration of HR-pQCT images, and the mechanical environment across the bone microarchitecture at these sites was simulated using micro-finite element analysis. We calculated odds ratios to determine the likelihood of bone formation (ORF) and resorption (ORR) with increasing/decreasing strain in percent as markers for mechanoregulation. At the distal radius, Tb.F was 47% lower and Tb.R was 59% lower in T1DM participants compared with CTRL (P < .05). Tb.F correlated positively with nerve conduction amplitude (R = 0.69, P < .05) in participants with T1DM and negatively with glycated hemoglobin (HbA1c) (R = -0.45, P < .05). Additionally, ORF was 34% lower and ORR was 18% lower in T1DM compared with CTRL (P < .05). Our findings represent in vivo evidence suggesting that bone remodeling in individuals with T1DM is in a state of low responsiveness to mechanical stimuli, resulting in impaired bone formation and resorption rates; these correlate to the degree of neuropathy and level of diabetes control.
Collapse
Affiliation(s)
- Matthias Walle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ankita Duseja
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Danielle E Whittier
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margaret Paggiosi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Kong M, Gao C, Luan X, Fan C, Hao M, Jin C, Zhao J, Li H, Zhao J, Luan J, Lin Y, Li Q. Analyzing the factors associated with efficacy among teriparatide treatment in postmenopausal women with osteoporosis. BMC Musculoskelet Disord 2024; 25:109. [PMID: 38310278 PMCID: PMC10837964 DOI: 10.1186/s12891-024-07227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Teriparatide (TPTD) is a widely used anabolic agent for the treatment of osteoporosis. Several factors have been identified to be related to bone mineral density (BMD) increase in anti-osteoporosis treatment with other agents; however, there has been no systematic analysis to summarize the associated determinants of BMD reaction to daily teriparatide treatment. METHODS In this retrospective study, we performed a comprehensive investigation involving not only clinical data but also several relevant lifestyle factors to be examined for their potential contribution to BMD response. This post-hoc analysis included 258 post-menopaused patients with osteoporosis who received TPTD at 20 µg/day for 12 months. Univariate and multivariate analyses were conducted to distinguish the response variables of lumbar spine (LS) BMD transformation, the principal outcome measure of efficacy, from the baseline at 12 months. RESULTS Twelve months of TPTD treatment resulted in an absolute 0.39 ± 0.37 increase in T-score of LS BMD. Gastrointestinal disease, prior bisphosphonate or glucocorticoid treatment, no vitamin K2 supplementation, low levels of serum 25(OH)D and PINP, weak increment of PINP and β-CTX at 3 months, unhealthy lifestyle (excessive smoking, tea, coffee, and drinking), vegetarian diet pattern, low ALT level, and high BMD at baseline were determined by univariate analyses to be related to the weak reaction of TPTD treatment (P < 0.10). In the multiple regression model, postmenopausal women with vitamin K2 supplementation, higher baseline serum 25(OH)D level, and higher PINP concentration at 3 months indicated a good reaction of LS BMD at 12 months (P < 0.05). Patients with gastrointestinal disease, prior bisphosphonate and glucocorticoid treatment, vegetarian diet pattern, and higher baseline BMD were significantly more likely to have a lower absolute LS BMD response compared to patients without these characteristics (P < 0.05). Further analysis confirmed the negative effect of unhealthy lifestyle on TPTD treatment. CONCLUSION Our results emphasize the significance of a comprehensive assessment of clinical or lifestyle-related characteristics of postmenopausal women with osteoporosis in the management of TPTD therapy in routine care.
Collapse
Affiliation(s)
- Meng Kong
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Changtong Gao
- Department of Oncology, Qingdao Municipal Hospital, No. 1, Jiao Zhou Road, Qing'dao, 266000, Shandong Province, China
| | - Xiaona Luan
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Cuiying Fan
- Department of General Surgery, Ankang Hospital of Shandong Province, No. 1, Ji Dai Road, Ji'ning, 272000, Shandong Province, China
| | - Meng Hao
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Canghai Jin
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Jiangning Zhao
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Hongyan Li
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Jindong Zhao
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Jian Luan
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China
| | - Yong Lin
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China.
| | - Qiang Li
- Department of Spine Surgery, Qingdao Municipal Hospital, No. 5, Middle Dong Hai Road, Qing'dao, 266000, Shandong Province, China.
| |
Collapse
|
10
|
Kong J, Tian C, Zhu L. Effect of different types of Tai Chi exercise programs on the rate of change in bone mineral density in middle-aged adults at risk of osteoporosis: a randomized controlled trial. J Orthop Surg Res 2023; 18:949. [PMID: 38072989 PMCID: PMC10712169 DOI: 10.1186/s13018-023-04324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To evaluate three Tai Chi (TC) exercise programs as intervention measures to compare their effects on improving rate of change in bone mineral density (BMD) in elderly individuals with osteoporosis (OP) and to propose the optimal exercise duration. METHODS A randomized controlled trial (RCT) was conducted to identify study participants based on inclusion and exclusion criteria. Due to subject attrition, the number of participants analyzed decreased from 60 to 49. These participants were divided into four groups: 24-style TC Chuan group (24TCCG) (n = 13, 7 males/6 females), TC Kung Fu Fan group (TCKFFG) (n = 12, 5 males/7 females), TC Softball group (TCSBG) (n = 11, 6 males/5 females), and a control group (CG) (n = 13, 6 males/7 females). Except for the control group, each group received different TC exercise programs four times a week for 60 min per session, lasting for 16 weeks. BMD was measured using dual-energy X-ray absorptiometry (DXA) at the L2-L4 lumbar vertebrae, Ward's triangle, femoral neck, and greater trochanter. The rate of change of BMD was calculated using the formula. RESULTS Compared with CG, all three TC groups showed significant improvements in BMD changes (P < 0.05), but their effects on the improvement of femoral neck and greater tuberosity BMD change rates were similar (P > 0.05). In addition, compared to the other exercise regimens, 24TCCG demonstrated more significant improvements in BMD at the L2-L4 lumbar vertebrae region and exhibited a more pronounced improvement in Ward's triangle BMD after only 8 weeks (P < 0.05). Short-term (≤ 4 weeks) TCKFFG was more effective than TCSBG in enhancing femoral neck BMD (P < 0.05). However, statistical significance was not found (P > 0.05) in all other cases. CONCLUSION These three TC exercise programs have similar positive effects on the BMD of the femoral neck and greater trochanter. However, compared with other exercise schemes, 24TCC showed a more significant improvement in BMD of the L2-L4 lumbar vertebrae region after just 8 weeks, as well as a more pronounced improvement in BMD of Ward's triangle. In terms of improving femoral neck BMD, TCKFF was found to be more effective than TCSB in less than 4 weeks. This study provides evidence for the effectiveness of TC exercise in improving BMD and preventing OP in the middle-aged and elderly high-risk population.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Qufu, China
| | - Chunlan Tian
- College of Sports Science, Qufu Normal University, Qufu, China
| | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China.
| |
Collapse
|
11
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. 5'-Methylthioadenosine strongly suppresses RANKL-induced osteoclast differentiation and function via inhibition of RANK-NFATc1 signalling pathways. Heliyon 2023; 9:e22365. [PMID: 38099006 PMCID: PMC10720268 DOI: 10.1016/j.heliyon.2023.e22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Excessive osteoclast-mediated bone resorption is a critical cause of osteoporosis affecting many aging people worldwide. 5'-Methylthioadenosine (MTA) is a natural sulfur-containing nucleoside normally produced in prokaryotes, plants, yeast, and higher eukaryotes via polyamine metabolism. MTA affects various physiological responses particularly the inflammatory pathway in both normal and cancerous cells and modulates the activation of nuclear factor-κB involved in the osteoclastogenesis signalling process. While several studies have reported that natural products possess anti-osteoclastogenesis phenolics and flavonoids, the effect of nucleoside derivatives on osteoclastogenesis remains limited. Therefore, this study aimed to explore the molecular mechanisms by which MTA affects pre-osteoclastic RAW 264.7 cells as a potential alleviation compound for inflammation-mediated bone loss. Osteoclasts were established by incubating RAW264.7 macrophage cells with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor, the vital cytokines for activation of osteoclast differentiation. Cell viability was measured using MTT assays at 24, 48, and 72 h. The suppressive effect of MTA on RANKL-induced osteoclast differentiation and function was assessed using tartrate-resistant acid phosphatase (TRAP) analysis, qRT-PCR, and pit formation, Western blot, and immunofluorescence assays. MTA showed dose-dependent anti-osteoclastogenic activity by inhibiting TRAP-positive cell and pit formation and reducing essential digestive enzymes, including TRAP, cathepsin K, and matrix metallopeptidase 9. MTA was observed to suppress the osteoclast transduction pathway through (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB); it attenuated NFƘB-P65 expression and down-regulated cFos proto-oncogene and nuclear factor of activated T cell c1 (NFATc1), the main regulators of osteoclasts. Moreover, the suppression of RANK (the initial receptor triggering several osteoclastogenic transduction pathways) was observed. Thus, this study highlights the potential of MTA as an effective therapeutic compound for restoring bone metabolic disease by inhibiting the RANK-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, England S10 2TN, UK
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| |
Collapse
|
12
|
Tang L, Guo H, Wang K, Zhou Y, Wu T, Fan X, Guo J, Sun L, Ta D. Low-intensity pulsed ultrasound enhances the positive effects of high-intensity treadmill exercise on bone in rats. J Bone Miner Metab 2023; 41:592-605. [PMID: 37270713 DOI: 10.1007/s00774-023-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Moderate exercise benefits bone health, but excessive loading leads to bone fatigue and a decline in mechanical properties. Low-intensity pulsed ultrasound (LIPUS) can stimulate bone formation. The purpose of this study was to explore whether LIPUS could augment the skeletal benefits of high-intensity exercise. MATERIALS AND METHODS MC3T3-E1 osteoblasts were treated with LIPUS at 80 mW/cm2 or 30 mW/cm2 for 20 min/day. Forty rats were divided into sham treatment normal control (Sham-NC), sham treatment high-intensity exercise (Sham-HIE), 80 mW/cm2 LIPUS (LIPUS80), and high-intensity exercise combined with 80 mW/cm2 LIPUS (LIPUS80-HIE). The rats in HIE group were subjected to 30 m/min slope treadmill exercise for 90 min/day, 6 days/week for 12 weeks. The LIPUS80-HIE rats were irradiated with LIPUS (1 MHz, 80 mW/cm2) for 20 min/day at bilateral hind limb after exercise. RESULTS LIPUS significantly accelerated the proliferation, differentiation, mineralization, and migration of MC3T3-E1 cells. Compared to 30 mW/cm2 LIPUS, 80 mW/cm2 LIPUS got better promotion effect. 12 weeks of high-intensity exercise significantly reduced the muscle force, which was significantly reversed by LIPUS. Compared with the Sham-NC group, Sham-HIE group significantly optimized bone microstructure and enhanced mechanical properties of femur, and LIPUS80-HIE further enhanced the improvement effect on bone. The mechanisms may be related to activate Wnt/β-catenin signal pathway and then up-regulate the protein expression of Runx2 and VEGF, the key factors of osteogenesis and angiogenesis. CONCLUSION LIPUS could augment the skeletal benefits of high-intensity exercise through Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Guo
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
- School of Physical Education, Bohai University, Jinzhou, 121013, China
| | - Keyi Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Tianpei Wu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
13
|
Hou JL, Yang WY, Zhang Q, Feng H, Wang XB, Li H, Zhou S, Xiao SM. Integration of Metabolomics and Transcriptomics to Reveal the Metabolic Characteristics of Exercise-Improved Bone Mass. Nutrients 2023; 15:nu15071694. [PMID: 37049535 PMCID: PMC10097349 DOI: 10.3390/nu15071694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
(1) Background: Exercise is effective in promoting and maintaining bone mass. The aim of this study was to detect the exercise-induced metabolic changes in bone tissue of zebrafish. (2) Methods: Thirty-eight zebrafish (Danio rerio, six months old) were analyzed. The exercise group (n = 19) received 8 weeks of counter-current swimming training. The control group (n = 19) was not subjected to exercise. Mineralization was quantified, and alkaline phosphatase (Alp) and anti-tartrate acid phosphatase (Trap) activities were estimated (n = 12). The metabolomics (n = 12) and transcriptomics (n = 14) data of bone tissue were used for the integration analyses. (3) Results: The results showed that the exercise training improved the bone mineralization of zebrafish, e.g., the exercise group (5.74 × 104 ± 7.63 × 103) had a higher mean optical density than the control group (5.26 × 104 ± 8.56 × 103, p = 0.046) for the caudal vertebrae. The amount of mineralized matrix in scales of the exercised zebrafish was also higher (0.156 ± 0.012 vs. 0.102 ± 0.003, p = 0.005). Both histological staining and biochemical analysis revealed increased Alp activity (0.81 ± 0.26 vs. 0.76 ± 0.01, p = 0.002) and decreased Trap activity (1.34 ± 0.01 vs. 1.36 ± 0.01, p = 0.005) in the exercise group. A total of 103 different metabolites (DMs, VIP ≥ 1, fold change (FC) ≥ 1.20 or ≤0.83, p < 0.050) were identified. Alanine, aspartate and glutamate metabolism, β-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis were the significantly enriched metabolic pathways (p < 0.050). A total of 35 genes (q ≤ 0.050 (BH), |Log2FC| ≥ 0.5) were coenriched with the 103 DMs in the four identified pathways. Protein–protein interaction network analysis of the 35 genes showed that entpd3, entpd1, and cmpk2 were the core genes. (4) Conclusions: The results of this study suggest that alanine, aspartate and glutamate metabolism, β-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis contributed to exercise-induced improvements in bone mass.
Collapse
Affiliation(s)
- Jin-Li Hou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Yu Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Feng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Bao Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sheng Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Z.); (S.-M.X.); Tel.: +86-20-8757-7692 (S.Z.); +86-20-8733-0151 (S.-M.X.)
| | - Su-Mei Xiao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (S.Z.); (S.-M.X.); Tel.: +86-20-8757-7692 (S.Z.); +86-20-8733-0151 (S.-M.X.)
| |
Collapse
|
14
|
Deriggi-Pisani GF, Stotzer US, Marqueti RC, Rodrigues MFC, Biffe BG, Silva KA, Fabricio V, Rosen CJ, Selistre-de-Araujo HS. Role of resistance training in bone macro and micro damages in an estrogen absence animal model. Life Sci 2023; 317:121417. [PMID: 36690246 DOI: 10.1016/j.lfs.2023.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS We evaluated the effects of resistance training (RT) on bone properties, morphology, and bone extracellular matrix (ECM) remodeling markers in an ovariectomy (OVX) rat model. MAIN METHODS Thirty-six female rats were divided into four groups: sham sedentary, OVX sedentary, sham RT, and OVX RT. Rats performed RT for ten weeks, during which they climbed a ladder with progressive loads attached to the tail. Tibias were stored for dual-energy X-ray densitometry (DXA), micro-computed tomography (micro-CT), and biomechanical, biophysical, and biochemical analysis. Femurs were stored for morphological, gene expression, and gelatin zymography analysis. KEY FINDINGS OVX decreased bone mineral density, stiffness, maximal load, and calcium content, which was reversed by RT. The trabecular number, connectivity, and MMP-13 gene expression decreased in OVX groups. Furthermore, OVX increased run-related transcription factor-2 (RUNX-2) and osteoprotegerin (OPG) gene expression, and increased the number of adipocytes in bone marrow and MMP-2 activity. SIGNIFICANCE RT was efficient in preventing or reversing changes in bone biomechanical properties in OVX groups, improving fracture load and resilience, which is relevant to prevent fractures. On the other hand, RT did not decrease the number of bone adipocytes in the OVX-RT group. However, RT was efficient for increasing trabecular thickness and cortical bone volume, which improved bone resistance. Our findings provide further insights into the mechanisms involved in the role of RT in OVX damage protection.
Collapse
Affiliation(s)
- Graziéle F Deriggi-Pisani
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| | - Uliana S Stotzer
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rita C Marqueti
- Laboratório de Análises Moleculares - LAM, Faculdade de Ceilândia, Universidade de Brasília (UnB), Distrito Federal, Brazil
| | - Maria F C Rodrigues
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Bruna G Biffe
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Karina A Silva
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Victor Fabricio
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Heloisa Sobreiro Selistre-de-Araujo
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Divecha AA, Bialek A, Kumar DS, Garn RM, Currie LEJ, Campos T, Friel KM. Effects of a 12-week, seated, virtual, home-based tele-exercise programme compared with a prerecorded video-based exercise programme in people with chronic neurological impairments: protocol for a randomised controlled trial. BMJ Open 2023; 13:e065032. [PMID: 36693691 PMCID: PMC9884574 DOI: 10.1136/bmjopen-2022-065032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Exercise is vital to staying well and preventing secondary complications in people with chronic neurological impairments (CNI). Appropriate exercise is often inaccessible to this population. The purpose of the study is to investigate the effects of a seated, virtual exercise programme on heart rate, recovery, fatigue, pain, motivation, enjoyment and quality of life in people with CNI. METHODS AND ANALYSIS Individuals with CNI will be screened for eligibility, and 60 participants will be randomised 1:1 into either a live or prerecorded group. There is no geographical limitation to where participants reside, since participation is virtual. The study will be coordinated by one site in White Plains, New York, USA. The live group will exercise with an instructor via Zoom while the prerecorded group will exercise at their chosen time using prerecorded videos, 3×/week for 12 weeks. PRIMARY OUTCOME MEASURES change in heart rate during exercise/recovery. SECONDARY OUTCOME MEASURES fatigue, motivation, level of pain and exertion, physical well-being, enjoyment of physical activity, motivation and quality of life. Outcomes will be assessed at baseline, midpoint, end of study and 1-month poststudy. Adverse events, medication changes and physical activity will be tracked throughout. Within-group and between-group comparisons will be performed by using analysis of covariance and regression. ETHICS AND DISSEMINATION BRANY IRB approval: 22 September 2020, protocol #20-08-388-512. All participants will provide written informed consent. Results will be disseminated through presentations, publications and ClinicalTrials.gov. TRIAL REGISTRATION NUMBER NCT04564495.
Collapse
Affiliation(s)
| | - Amy Bialek
- Burke Neurological Institute, White Plains, New York, USA
| | - Devina S Kumar
- Burke Neurological Institute, White Plains, New York, USA
| | - Rachel M Garn
- Burke Neurological Institute, White Plains, New York, USA
- School of Medicine, State of New York Upstate Medical University, Syracuse, NY, USA
| | | | - Talita Campos
- Burke Neurological Institute, White Plains, New York, USA
- School of Nursing, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathleen M Friel
- Burke Neurological Institute, White Plains, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
16
|
Yang Y, Chen Z, Huang Z, Tao J, Li X, Zhou X, Du Q. Risk factors associated with low bone mineral density in children with idiopathic scoliosis: a scoping review. BMC Musculoskelet Disord 2023; 24:48. [PMID: 36670417 PMCID: PMC9854192 DOI: 10.1186/s12891-023-06157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Children with idiopathic scoliosis (IS) have a high risk of osteoporosis and IS with low bone mineral density (BMD) are susceptible to curve progression. This review aims to explore the risk factors of low BMD in children with IS. METHODS Studies were retrieved from 5 databases that were published up to January 2022. Search terms are keywords in titles or abstracts, including subject headings related to "Scoliosis", "Bone Mineral Density", and "Risk Factors". Observational studies on risk factors of low BMD in children with IS were enrolled in this review. The number of studies, sample size, outcome measures, research type, endocrine, and lifestyle-related factors, gene/signal pathway, and other contents were extracted for qualitative analysis. RESULTS A total of 56 studies were included in this scoping review. Thirty studies involved genetic factors that may affect BMD, including the Vitamin-D receptor gene, RANK/RANKL signal pathway, the function of mesenchymal stem cells, Runx2, Interleukin-6 (IL-6), and miR-145/β-catenin pathway. Eight studies mentioned the influence of endocrine factors on BMD, and the results showed that serum levels of IL-6, leptin and its metabolites, and ghrelin in children with IS were different from the age-matched controls. In addition, there were 18 articles on lifestyle-related factors related to low BMD in children with IS, consisting of physical activity, calcium intake, Vitamin D level, and body composition. CONCLUSIONS Genetic, endocrine, and lifestyle-related factors might relate to low BMD and even osteoporosis in IS. To prevent osteoporosis, the effectiveness of regular screening for low BMD risk factors in children with IS needs to be investigated. Additionally, clear risk factors suggest strategies for bone intervention. Future studies should consider the effectiveness of calcium and vitamin D supplements and physical activity in BMD improvement.
Collapse
Affiliation(s)
- Yuqi Yang
- College of Global Public Health, New York University, New York, NY, 10003, USA
| | - Zhengquan Chen
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zefan Huang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jing Tao
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xin Li
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
- Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 202150, China.
| |
Collapse
|
17
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
18
|
Sun W, Zhang XA, Wang Z. The role and regulation mechanism of Chinese traditional fitness exercises on the bone and cartilage tissue in patients with osteoporosis: A narrative review. Front Physiol 2023; 14:1071005. [PMID: 36926189 PMCID: PMC10011494 DOI: 10.3389/fphys.2023.1071005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis (ops) is a systemic degenerative bone disease characterized by bone mass reduction, bone mineral density loss, bone microstructure destruction, bone fragility, and increased fracture susceptibility. Thus far, drug therapy is the main method used to prevent and treat osteoporosis. However, long-term drug treatment will inevitably lead to drug resistance and certain side effects. In response, rehabilitation treatment is generally recommended, which involves drug supplementation combined with the treatment. A Chinese traditional fitness exercise is an organic combination of sports and traditional Chinese medicine with a series of advantages such as being safe, convenient, non-toxic, and harmless. Hence, it is one of the rehabilitation methods widely used in clinical practice. By searching the CNKI, PubMed, Web of Science, Embase, Cochrane Library, and other relevant databases, our research clarifies the current situation of four kinds of Chinese traditional fitness exercises widely used in clinical practice, namely, Taijiquan, Baduanjin, Wuqinxi, and Yijin Jing. In addition, the molecular mechanism of osteoporosis is summarized in this study. Based on the research, Chinese traditional fitness exercises are expected to directly stimulate the bone through a mechanical load to improve bone density. Moderate and regular traditional Chinese fitness exercises also improve osteoporosis by regulating the endocrine system with the secretion of hormones and factors such as estrogen and irisin, which are beneficial for bone formation. Finally, the purpose of promoting bone formation, reducing bone loss, and preventing and treating osteoporosis is achieved. The various means of Chinese traditional fitness exercises have different emphases, and the effect of improving bone density differs in various parts of the body. The exercisers may choose the exercise flexibly based on their own needs. Chinese traditional fitness exercises can improve the bone density of the exercisers and relieve pain, improve balance, and regulate the psychological state. Consequently, it is worth promoting to be applied in clinical practices.
Collapse
Affiliation(s)
- Weibo Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
19
|
Exercise and Bone Health in Cancer: Enemy or Ally? Cancers (Basel) 2022; 14:cancers14246078. [PMID: 36551564 PMCID: PMC9776461 DOI: 10.3390/cancers14246078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Bone health is often threatened in cancer patients. Bone metastasis and osteoporosis frequently occur in patients with cancer and may lead to different skeletal-related events, which may negatively affect patients' quality of life and are associated with high mortality risk. Physical exercise has been recognized as a potential adjunctive strategy in the cancer setting to improve physical function as well as treatment-related side effects. Nevertheless, exercise is often not recommended to patients with bone health impairments due to safety concerns. In the current review, we aimed, through a comprehensive review of the evidence, to explore the impact of exercise in terms of safety profile, bone outcomes, and the effects on other outcomes in patients with cancer affected by bone metastasis or at high risk of losing bone. Additionally, we explored the potential mechanisms by which exercise may act on bone, particularly the impact of mechanical load on bone remodeling. Finally, considerations about exercise prescription and programming in these populations are also discussed.
Collapse
|
20
|
Jiang X, Yan N, Zheng Y, Yang J, Zhao Y. Risk of primary osteoporosis score (RPOPs): an algorithm model for primary osteoporosis risk assessment in grass-roots hospital. BMC Musculoskelet Disord 2022; 23:1041. [PMID: 36456916 PMCID: PMC9713074 DOI: 10.1186/s12891-022-06014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND This study aimed to develop and validate a lasso regression algorithm model which was established by correlation factors of bone mineral density (BMD) and could be accurately predicted a high-risk population of primary osteoporosis (POP). It provides a rapid, economical and acceptable early screening method for osteoporosis in grass-roots hospitals. METHODS We collected 120 subjects from primary osteoporosis screening population in Zhejiang Quhua Hospital between May 2021 and November 2021 who were divided into three groups (normal, osteopenia and osteoporosis) according to the BMD T-score. The levels of three micro-RNAs in the plasma of these people were detected and assessed by qRT-PCR. At the same time, the levels of β-CTX and t-P1NP in serum of the three groups were determined. Based on the cluster random sampling method, 84 subjects (84/120, 70%) were selected as the training set and the rest were the test set. Lasso regression was used to screen characteristic variables and establish an algorithm model to evaluate the population at high risk of POP which was evaluated and tested in an independent test cohort. The feature variable screening process was used 10-fold cross validation to find the optimal lambda. RESULTS The osteoporosis risk score was established in the training set: Risk of primary osteoporosis score (RPOPs) = -0.1497785 + 2.52Age - 0.19miR21 + 0.35miR182 + 0.17β-CTx. The sensitivity, precision and accuracy of RPOPs in an independent test cohort were 79.17%, 82.61% and 75%, respectively. The AUC in the test set was 0.80. Some risk factors have a significant impact on the abnormal bone mass of the subjects. These risk factors were female (p = 0.00013), older than 55 (p < 2.2e-16) and BMI < 24 (p = 0.0091) who should pay more attention to their bone health. CONCLUSION In this study, we successfully constructed and validated an early screening model of osteoporosis that is able to recognize people at high risk for developing osteoporosis and remind them to take preventive measures. But it is necessary to conduct further external and prospective validation research in large sample size for RPOPs prediction models.
Collapse
Affiliation(s)
- Xinhua Jiang
- Department of Laboratory Medicine, Zhejiang Quhua Hospital, Quzhou, Zhejiang Province China
| | - Na Yan
- grid.511046.7Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co.,Ltd, Hangzhou, Zhejiang Province China
| | - Yaqin Zheng
- Department of Laboratory Medicine, Zhejiang Quhua Hospital, Quzhou, Zhejiang Province China
| | - Jintao Yang
- grid.511046.7Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co.,Ltd, Hangzhou, Zhejiang Province China
| | - Yanfei Zhao
- Department of Laboratory Medicine, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang Province China
| |
Collapse
|
21
|
Effect of resistance exercise on bone health of old aged individuals: Review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Lippi L, Folli A, Curci C, D’Abrosca F, Moalli S, Mezian K, de Sire A, Invernizzi M. Osteosarcopenia in Patients with Chronic Obstructive Pulmonary Diseases: Which Pathophysiologic Implications for Rehabilitation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114314. [PMID: 36361194 PMCID: PMC9657186 DOI: 10.3390/ijerph192114314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 05/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a burdensome condition affecting a growing number of people worldwide, frequently related to major comorbidities and functional impairment. In these patients, several factors might have a role in promoting both bone and muscle loss, including systemic inflammation, corticosteroid therapies, sedentary behaviours, deconditioning, malnutrition, smoking habits, and alcohol consumption. On the other hand, bone and muscle tissues share several linkages from functional, embryological, and biochemical points of view. Osteosarcopenia has been recently defined by the coexistence of osteoporosis and sarcopenia, but the precise mechanisms underpinning osteosarcopenia in patients with COPD are still unknown. In this scenario, a deeper understanding of the molecular basis of osteosarcopenia might guide clinicians in a personalized approach integrating skeletal muscle health with the pulmonary rehabilitation framework in COPD. Taken together, our results summarized the currently available evidence about the multilevel interactions between osteosarcopenia and COPD to pave the way for a comprehensive approach targeting the most common risk factors of these pathological conditions. Further studies are needed to clarify the role of modern clinical strategies and telemedicine solutions to optimize healthcare delivery in patients with COPD, including osteopenia, osteoporosis, and sarcopenia screening in these subjects.
Collapse
Affiliation(s)
- Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Arianna Folli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Francesco D’Abrosca
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Stefano Moalli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
- Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +390961369768
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
23
|
The Impact of an Adapted Physical Activity Program on Bone Turnover, Physical Performance and Fear of Falling in Osteoporotic Women with Vertebral Fractures: A Quasi-Experimental Pilot Study. Biomedicines 2022; 10:biomedicines10102467. [PMID: 36289729 PMCID: PMC9598604 DOI: 10.3390/biomedicines10102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Physical activity has been indicated as a potential strategy to counteract osteoporosis (OP). This study of post-menopausal women with osteoporotic vertebral fractures investigated the effect of an adapted physical activity (APA) program on two serum bone turnover biomarkers (Bone Alkaline Phosphatase, B-ALP and C-terminal telopeptide of type 1 collagen, CTX-1), functional capacity (6-Minutes Walking Test, 6MWT), and risk and fear of falls (Tinetti and Falls Efficacy scale). The APA group (n = 12) performed a 1-h group session twice per week for 6 months whereas the control group (n = 9) was asked to maintain their current lifestyle. The exercise program did not affect the serum concentrations of B-ALP and CTX-1 biomarkers measured at the baseline and after 6 months in women of the APA group. Moreover, at the end of intervention no significant differences in serum concentrations for either biomarker was observed between the two study groups. Interestingly, when compared to the control group, women in the APA group showed significant improvement in the functional capacity measures by 6MWT (p = 0.037) and a decrease of the risk and fear of falls as indicated by the Tinetti test (p = 0.043). Based on these findings, exercise could provide new perspectives for the care and management of OP.
Collapse
|
24
|
Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol 2022; 13:1005665. [PMID: 36164342 PMCID: PMC9509020 DOI: 10.3389/fimmu.2022.1005665] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a disease that weakens bones and has a high morbidity rate worldwide, which is prevalent among the elderly, particularly, women of postmenopausal age. The dynamic balance between bone formation and resorption is necessary for normal bone metabolism. Many factors, including aging, estrogen deficiency, and prolonged immobilization, disrupt normal apoptosis, autophagy, and inflammation, leading to abnormal activation of osteoclasts, which gradually overwhelm bone formation by bone resorption. Moderate exercise as an effective non-drug treatment helps increase bone formation and helps relieve OP. The possible mechanisms are that exercise affects apoptosis and autophagy through the release of exercise-stimulated myohormone and the secretion of anti-inflammatory cytokines via mechanical force. In addition, exercise may also have an impact on the epigenetic processes involved in bone metabolism. Mechanical stimulation promotes bone marrow mesenchymal stem cells (BMSCs) to osteogenic differentiation by altering the expression of non-coding RNAs. Besides, by reducing DNA methylation, the mechanical stimulus can also alter the epigenetic status of osteogenic genes and show associated increased expression. In this review, we reviewed the possible pathological mechanisms of OP and summarized the effects of exercise on bone metabolism, and the mechanisms by which exercise alleviates the progression of OP, to provide a reference for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| |
Collapse
|
25
|
Sun C, Qi B, Huang X, Chen M, Jin Z, Zhang Y, Zhu L, Wei X. Baduanjin exercise: A potential promising therapy toward osteoporosis. Front Med (Lausanne) 2022; 9:935961. [PMID: 35991646 PMCID: PMC9381703 DOI: 10.3389/fmed.2022.935961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Baduanjin (BDJ) exercise is a traditional exercise that combines breathing, body movement, meditation and awareness to help delay the onset and progression of senile degenerative musculoskeletal diseases, such as osteoporosis (OP). The aim of this meta-analysis is to evaluate the efficacy of BDJ exercise, and preliminarily infer its effective mechanism in the treatment of OP. Methods We identified relevant randomized controlled trials (RCTs) through eight databases, and compared BDJ exercise with the control groups (including blank control and conventional treatment intervention). The main outcome measure was bone mineral density (BMD), the additional outcome measures were visual analogue scale (VAS), Berg balance scale (BBS), serum Calcium (Ca), serum Phosphorus (P), serum Alkaline phosphatase (ALP), and serum bone gla protein (BGP). Meta-analysis and trial sequence analysis (TSA) were performed using RevMan 5.4, Stata 16.0, and TSA 0.9. Results In total, 13 RCTs involving 919 patients were included in the analysis. For postmenopausal osteoporosis, BDJ exercise alone and BDJ exercise combined with conventional treatment can improve the BMD of lumbar spine. BDJ exercise alone can influence serum Ca and ALP. BDJ exercise combined with conventional treatment can improve balance (BBS) and influence serum BGP. For senile osteoporosis, BDJ exercise alone and BDJ exercise combined with conventional treatment can improve balance (BBS). BDJ exercise combined with conventional treatment can improve the BMD of hip and pain relieve (VAS). For primary osteoporosis, BDJ exercise combined with conventional treatment can improve the BMD of lumbar spine and femoral neck. Conclusion Baduanjin exercise may be beneficial to improve BMD, relieve pain, improve balance ability, influence serum BGP and serum ALP in patients with OP, but differences occur due to various types of OP. Due to the low quality of research on the efficacy and mechanism of BDJ exercise in the treatment of OP, high-quality evidence-based research is still needed to provide reliable supporting evidence. Systematic Review Registration [http://www.crd.york.ac.uk/PROSPERO], identifier [CRD42022329022].
Collapse
Affiliation(s)
- Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Huang
- School of Tradition Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zikai Jin
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yili Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yili Zhang,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Liguo Zhu,
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xu Wei,
| |
Collapse
|
26
|
Li Y, Gao H, Zhao L, Wang J. Osteoporosis in COPD patients: Risk factors and pulmonary rehabilitation. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:487-496. [PMID: 35688435 PMCID: PMC9329018 DOI: 10.1111/crj.13514] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
Objectives To present a review on the pathogenesis, risk factor and treatment of chronic obstructive pulmonary disease complicated with osteoporosis and provide new ideas for the diagnosis and treatment. Data source A systematic search is carried out using keywords as chronic obstructive pulmonary disease, osteoporosis, risk factors, and pulmonary rehabilitation. Results Patients with chronic obstructive pulmonary disease have a high prevalence of osteoporosis and a high risk of fracture. The mechanisms of osteoporosis in COPD patients are associated with general risk factors, such as smoking, reduced physical activity, low weight, and disease‐specific risk factors, such as systemic inflammatory, Vitamin D deficiency, use of glucocorticoid, anemia, hypoxemia, and hypercapnia. The treatment of osteoporosis in COPD emphasizes comprehensive intervention, which mainly include basic treatment and anti‐osteoporosis drugs. Noticeably, pulmonary rehabilitation program is an important part of treatment. Conclusions This work summarizes the pathogenesis, risk factor, prevention, and treatment of chronic obstructive pulmonary disease complicated with osteoporosis, and the latest progress of studies on chronic obstructive pulmonary disease and osteoporosis is discussed.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jinrui Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
27
|
Evaluation of Knowledge, Attitudes, and Practices Related to Osteoporosis and Correlates of Perceived High Risk among People Living in Two Main Districts of Lebanon. J Osteoporos 2022; 2022:1188482. [PMID: 35656005 PMCID: PMC9152399 DOI: 10.1155/2022/1188482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The prevalence of osteoporosis is increasing in Lebanon. AIM We evaluated the knowledge, attitudes, and practices related to osteoporosis and correlates of its perceived high risk among people living in Beirut and Mount Lebanon districts of Lebanon. METHODS This study is a cross-sectional study which consisted of 376 participants that were selected from the two districts within two or three households after two geographical areas were randomly selected from each stratum classified by education and altitude. They were then asked to fill a KAP survey on osteoporosis and provide information on factors likely related to its perceived high risk. RESULTS The majority of participants had a low (20.2%) and moderate (65.4%) knowledge of osteoporosis, with a higher knowledge in females than in males. A higher percentage of young people perceived it as a serious health risk than that of older people. In contrast, 85.9% participants reported drinking caffeinated beverages and 51.6% participants reported that they do not exercise. Glucose intolerance due to epigenetic and genetic factors, female sex, and older age were risk factors of a perceived high risk of osteoporosis, while any physical exercise, abstention from caffeine for 48 to 72 hours, and higher education were protective factors. CONCLUSION A nationwide KAP study should be conducted; likewise, awareness campaigns should be adopted.
Collapse
|
28
|
Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 2022; 12:8117. [PMID: 35581227 PMCID: PMC9114112 DOI: 10.1038/s41598-022-11965-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice. Although age-related changes were observed in the microarchitecture of the femur, tibia, vertebra, and basisphenoid bone, and were more pronounced in females than in males, the microarchitecture of both the interparietal bone and body of the mandible, which develop by intramembranous ossification, was less affected by age and sex. By contrast, the condyle of the mandible was more affected by aging in males compared to females. Taken together, our results indicate that mouse craniofacial bones are uniquely affected by age and sex.
Collapse
|
29
|
Paiva LA, Silva IS, de Oliveira SA, de Souza AS, Jacques COB. Analysis of high-intensity interval training on bone mineral density in an experimental model of type 2 diabetes. Acta Cir Bras 2022; 37:e370207. [PMID: 35507971 PMCID: PMC9064184 DOI: 10.1590/acb370207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To analyze the effect of high-intensity interval training (HIIT) on bone mineral density (BMD) in a model of type 2 diabetes mellitus. METHODS Thirty-two male, adult, 12-week-old rats (Rattus norvegicus), of the Wistar lineage, were used. The animals induced to the experimental model received a high fat diet for 10 days and, after that period, intraperitoneal injection of streptozotocin (40 mg·kg-1), dissolved in 20 mmol·L-1 sodium citrate solution (pH = 4.5). The experimental group of diabetes was formed by the animals that, 48 h after the injection of streptozotocin, had fasting blood glucose > 250 mg·dL-1). The animals were randomly divided into four groups with eight animals each: HIIT experimental diabetes; HIIT control; sedentary experimental diabetes and sedentary control. The animals in the HIIT group performed an aerobic exercise protocol on a treadmill inclined at an angle of 15° to the horizontal, with interspersed intensity. Five weekly sessions, lasting 49 min each, were held for 6 weeks. The analysis of cortical bone density (CBD) and BMD were performed by X-ray images using the In-Vivo Xtreme II/Bruker system. RESULTS For CBD and BMD, when comparing diabetes and control groups, a significant difference was seen between groups in relation to HIIT (p = 0.007). Animals submitted and not submitted to HIIT in the same group showed a significant difference between groups in relation to diabetes (p < 0.001). CONCLUSIONS The HIIT experimental diabetes group had increased CBD and BMD in comparison with the sedentary experimental diabetes group.
Collapse
Affiliation(s)
- Letícia Alves Paiva
- Master. Universidade Federal do Mato Grosso do Sul – Faculty of Medicine – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Iandara Schettert Silva
- PhD. Universidade Federal do Mato Grosso do Sul – Faculty of Medicine – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Silvio Assis de Oliveira
- PhD. Universidade Federal do Mato Grosso do Sul – Integrated Institute of Health – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Albert Schiaveto de Souza
- PhD. Universidade Federal do Mato Grosso do Sul – Biosciences Institute – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Claudio Osório Brito Jacques
- Nutritionist. Universidade Federal do Mato Grosso do Sul – Faculty of Pharmaceutical Sciences – Research and Production Laboratory– Campo Grande (MS), Brazil
| |
Collapse
|
30
|
Prowting JL, Skelly LE, Kurgan N, Fraschetti EC, Klentrou P, Josse AR. Acute Effects of Milk vs. Carbohydrate on Bone Turnover Biomarkers Following Loading Exercise in Young Adult Females. Front Nutr 2022; 9:840973. [PMID: 35571916 PMCID: PMC9101466 DOI: 10.3389/fnut.2022.840973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy products and impact exercise have previously been identified to be independently beneficial for bone mineral properties, however, it is unknown how the combination of these two osteogenic interventions may alter acute bone turnover. Using a randomized crossover design, we compared the acute effects of consuming milk vs. an isoenergetic carbohydrate control beverage on bone biomarkers following loading exercise. Thirteen healthy female participants (Age = 20.3 ± 2.3y; BMI = 21.0 ± 1.1 kg/m2) consumed either 550 mL of 0% skim white milk (MILK) or 52.7 g of maltodextrin in 550 mL of water (CHO), both 5 min and 1 h following completion of a combined plyometric (198 impacts) and resistance exercise (3-4 sets/exercise, 8-12 reps/set, ∼75% 1-RM) bout. Venous blood samples were obtained pre-exercise, and 15 min, 75 min, 24 h and 48 h post-exercise to assess serum concentrations of bone resorption biomarkers, specifically carboxyl-terminal crosslinking telopeptide of type I collagen (CTX), receptor activator nuclear factor kappa-β ligand (RANKL), and sclerostin (SOST), as well as bone formation biomarkers, specifically osteoprotegerin (OPG) and osteocalcin (OC). When absolute biomarker concentrations were examined, there were no interaction or group effects for any biomarker, however, there were main time effects (p < 0.05) for RANKL, SOST, and OC, which were lower, and the OPG: OPG/RANKL ratio, which was higher at 75 min post-exercise compared with baseline in both conditions. In addition to assessing absolute biomarker concentrations at specific timepoints, we also evaluated the relative (% change) cumulative post-exercise response (75 min to 48 h) using an area under the curve (AUC) analysis. This analysis showed that the relative post-exercise CTX response was significantly lower in the MILK compared to the CHO condition (p = 0.03), with no differences observed in the other biomarkers. These results show that while milk does not appear to alter absolute concentrations of bone biomarkers compared to CHO, it may attenuate relative post-exercise bone resorption (i.e., blunt the usual catabolic response to exercise).
Collapse
Affiliation(s)
- Joel L. Prowting
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Lauren E. Skelly
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily C. Fraschetti
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
31
|
Negrini TDC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. FRONTIERS IN ORAL HEALTH 2022; 2:697428. [PMID: 35048037 PMCID: PMC8757730 DOI: 10.3389/froh.2021.697428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review of the literature aimed to investigate the interplay between the oral microbiome, oral cavity conditions, and host immune response in Diabetes mellitus (DM). Moreover, this review also aimed to investigate how DM related risk factors, such as advanced age, hyperglycemia, hyperlipidemia, obesity, hypertension and polycystic ovary syndrome (PCOS), act in promoting or modifying specific mechanisms that could potentially perpetuate both altered systemic and oral conditions. We found that poorly controlled glycemic index may exert a negative effect on the immune system of affected individuals, leading to a deficient immune response or to an exacerbation of the inflammatory response exacerbating DM-related complications. Hyperglycemia induces alterations in the oral microbiome since poor glycemic control is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of individuals with DM. A bidirectional relationship between periodontal diseases and DM has been suggested: DM patients may have an exaggerated inflammatory response, poor repair and bone resorption that aggravates periodontal disease whereas the increased levels of systemic pro-inflammatory mediators found in individuals affected with periodontal disease exacerbates insulin resistance. SARS-CoV-2 infection may represent an aggravating factor for individuals with DM. Individuals with DM tend to have low salivary flow and a high prevalence of xerostomia, but the association between prevalence/experience of dental caries and DM is still unclear. DM has also been associated to the development of lesions in the oral mucosa, especially potentially malignant ones and those associated with fungal infections. Obesity plays an important role in the induction and progression of DM. Co-affected obese and DM individuals tend to present worse oral health conditions. A decrease in HDL and, an increase in triglycerides bloodstream levels seem to be associated with an increase on the load of periodontopathogens on oral cavity. Moreover, DM may increase the likelihood of halitosis. Prevalence of impaired taste perception and impaired smell recognition tend to be greater in DM patients. An important interplay among oral cavity microbiome, DM, obesity and hypertension has been proposed as the reduction of nitrate into nitrite, in addition to contribute to lowering of blood pressure, reduces oxidative stress and increases insulin secretion, being these effects desirable for the control of obesity and DM. Women with PCOS tend to present a distinct oral microbial composition and an elevated systemic response to selective members of this microbial community, but the association between oral microbiome, PCOS are DM is still unknown. The results of the studies presented in this review suggest the interplay among the oral microbiome, oral cavity conditions, host immune response and DM and some of the DM associated risk factors exist. DM individuals need to be encouraged and motivated for an adequate oral health care. In addition, these results show the importance of adopting multidisciplinary management of DM and of strengthening physicians-dentists relationship focusing on both systemic and on oral cavity conditions of DM patients.
Collapse
Affiliation(s)
- Thais de Cássia Negrini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Cristiane Duque
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Holubiac IȘ. Strength training program for postmenopausal women with osteoporosis. BIOMEDICAL ENGINEERING APPLICATIONS FOR PEOPLE WITH DISABILITIES AND THE ELDERLY IN THE COVID-19 PANDEMIC AND BEYOND 2022:185-196. [DOI: 10.1016/b978-0-323-85174-9.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Guo J, Yuan Y, Zhang L, Wang M, Tong X, Liu L, Zhang M, Li H, Chen X, Zou J. Effects of exercise on the expression of long non-coding RNAs in the bone of mice with osteoporosis. Exp Ther Med 2021; 23:70. [PMID: 34934441 PMCID: PMC8649853 DOI: 10.3892/etm.2021.10993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Physical activity or exercise are known to promote bone formation and decrease bone resorption to maintain skeletal and bone health both in animal models and in humans with osteoporosis. Previous studies have indicated that long non-coding RNAs (lncRNAs) are able to regulate bone metabolism. Therefore, the present study aimed to evaluate whether lncRNAs responded to exercise by regulating the balance of bone metabolism in order to prevent osteoporosis. To meet this end, ovariectomized mice were used in the present study to establish an osteoporosis model. The exercise treatment groups were subjected to 9 weeks of treadmill running exercise in 4 weeks of the operation was performed Femurs were collected to measure bone mineral density, bone mass, bone formation and resorption. The expression levels of lncRNAs were subsequently measured using microarray and gene function analyses. The pairwise comparison results [ovariectomy (OVX) vs. OVX + exercise (EX); OVX vs. SHAM; SHAM vs. SHAM + EX; OVX + EX vs. SHAM + EX] of the gene microarray analysis revealed that the expression of 2,424 lncRNAs (1718 upregulated and 706 downregulated) were significantly altered in the mouse femurs following treadmill running. Gene Ontology (GO) analysis, incorporating the GO annotations ‘biological processes’, ‘molecular function’ and ‘cellular components’, of osteoporosis revealed that the VEGF, mTOR and NF-κB signaling pathways were potential targets of the lncRNAs. Moreover, it was possible to predict the target microRNAs (miRNAs) of six lncRNAs (LOC105246953, LOC102637959, NONMMUT014677, NONMMUT027251, ri|D130079K21|PX00187K16|1491 and NONMMUT006626), which suggested that the underlying mechanism by which lncRNAs respond to exercise involved bone regulation via lncRNA-miRNA sponge adsorption. Overall, these results suggested that the treadmill running exercise did regulate lncRNA expression in the bone, and that this was involved in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Sports Science, Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
34
|
Ebid A, El-Boshy M, El-Shamy S, Thabet A, Abedalla M, Ali T. Long-term effect of full-body pulsed electromagnetic field and exercise protocol in the treatment of men with osteopenia or osteoporosis: A randomized placebo-controlled trial. F1000Res 2021; 10:649. [PMID: 34900231 PMCID: PMC8637238 DOI: 10.12688/f1000research.54519.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Osteoporosis is the most prevalent metabolic disease affecting bones.
Objective: To investigate the long-term effect of pulsed electromagnetic field (PEMF) combined with exercise protocol on bone mineral density (BMD) and bone markers in men with osteopenia or osteoporosis.
Methods: Ninety-five males with osteopenia or osteoporosis (mean age, 51.26 ± 2.41 years; mean height, 176 ± 2.02 cm; mean weight, 83.08 ± 2.60 kg; mean body–mass index (BMI), 26.08 ± 1.09 kg/m
2) participated in the study, and they were randomly assigned to one of three groups: Group 1 received a full-body PEMF and exercise protocol (PEMF +EX), Group 2 received a placebo full-body PEMF and exercise protocol (PPEMF +EX), and Group 3 received a full-body PEMF alone (PEMF). PEMF was applied for the whole body using a full-body mat three times per week for 12 weeks, with an exercise protocol that includes flexibility, aerobic exercise, strengthening, weight-bearing, and balance exercises followed by whole-body vibration (WBV) training. Outcome measures include BMD of total hip and lumbar spine and bone markers [serum osteocalcin (s-OC), Serum amino-terminal cross-linking telopeptide of type I collagen (s-NTX), Serum carboxy-terminal cross-linking telopeptide of type I collagen (s-CTX), Parathyroid hormones (PTH), Bone-specific Alkaline Phosphatase (BSAP), and 25-hydroxy vitamin D (Vit D)].
Results: The
BMD of total hip and lumbar spine was significantly increased post-treatment in all groups, and more so in Group 1 and Group 2 than Group 3. There was a significant difference in bone markers in all groups, more so in Group 1 and Group 2 than in Group 3.
Conclusion: PEMF combined with exercise protocol exerts a potent role for treating OP, is more effective than exercise and PEMF alone for increasing BMD and enhancing bone formation, and suppresses bone-resorption markers after 12-weeks of treatment with the impact lasting up to 6 months.
Collapse
Affiliation(s)
- Anwar Ebid
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ali Thabet
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Tariq Ali
- Umm Al-Qura University Medical Center, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
35
|
Ragurajaprakash K. Spine degeneration – Advanced neuromuscular therapy protocol. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Effect of Vitamin D Supplementation on Vitamin D Level and Bone Mineral Density in Patients With Cirrhosis: Several Confounding Factors. Am J Gastroenterol 2021; 116:2143-2144. [PMID: 34158465 DOI: 10.14309/ajg.0000000000001362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Yao Z, Chen P, Fan L, Chen P, Zhang X, Yu B. CCL2 is a critical mechano-responsive mediator in crosstalk between osteoblasts and bone mesenchymal stromal cells. FASEB J 2021; 35:e21851. [PMID: 34547121 DOI: 10.1096/fj.202002808rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.
Collapse
Affiliation(s)
- Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pengyu Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liuyi Fan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Peisheng Chen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
38
|
Khanal T, Bedecarrats GY, Kiarie EG. Cage type and mineral nutrition had independent impact on skeletal development in Lohmann LSL-Lite pullets from hatch to 16 weeks of age. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:631-640. [PMID: 34401541 PMCID: PMC8334376 DOI: 10.1016/j.aninu.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
The effects of rearing cage type and dietary Ca, available P and vitamin D3 (VitD3) on body and skeletal development were studied. A total of 3,420 Lohmann LSL-Lite day-old chicks were reared in conventional (CON) or furnished cages (FUR) to 16 wk of age. Initially, 40 and 150 chicks/cage were placed in CON and FUR and transitioned to 20 and 75 chicks/cage at 8 wk of age, respectively. Three diets: Diet 1, Diet 1.5 and Diet 2 were formulated to meet nutrient specifications with Diet 1.5 and Diet 2 containing 1.5 and 2 times more Ca, P and VitD3 than Diet 1, respectively. Diets were allocated within cage type to give 6 replicates and fed in 3 feeding programs: starter, grower and developer. At 4, 12 and 16 wk of age, BW was recorded, and femur, tibia and blood samples for bone quality and related parameters. There were no interactions (P > 0.05) of cage type, diet and pullet age on BW, plasma Ca and inorganic P, femur and tibia morphometry, mineral density (MD), breaking strength (BS) and ash concentration (AC). Concentration of Ca, P and VitD3 linearly decreased BW (P < 0.001), relative femur (P = 0.010) and tibia weight (P = 0.013). A quadratic increase on femur MD (P = 0.03) and BS (P = 0.026) was observed with dietary concentration of Ca, P and VitD3. Femur (P = 0.031) was longer for CON than FUR pullets, however, femur for FUR pullets had higher (P = 0.003) AC. Cage had no effect (P ≥ 0.415) femoral MD and BS. Pullets reared in FUR cages exhibited higher tibial MD (P = 0.015), BS (P = 0.071), AC (P < 0.01) and whole-body mineral content (P < 0.01). In conclusion, cage type and diets showed independent effect on femur and tibia quality with FUR pullets exhibiting enhanced indices of mineralization. Feeding pullets twice the recommended Ca, P and VitD3 decreased BW, relative weight of leg bone but enhanced femoral strength with no effects on tibia attributes.
Collapse
Affiliation(s)
- Tanka Khanal
- Department of Animal Biosciences, University of Guelph, Guelph, N1G2W1, Canada
| | | | | |
Collapse
|
39
|
The Effect of Endurance and Endurance-Strength Training on Bone Mineral Density and Content in Abdominally Obese Postmenopausal Women: A Randomized Trial. Healthcare (Basel) 2021; 9:healthcare9081074. [PMID: 34442211 PMCID: PMC8391265 DOI: 10.3390/healthcare9081074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
The optimal type of exercise that simultaneously decreases body weight and preserves bone health in people with obesity is unknown. This parallel randomized trial aimed to compare the effect of endurance and endurance-strength training on bone mineral density (BMD) and content (BMC) in abdominally obese postmenopausal women. A total of 101 women were recruited and randomly assigned to endurance or endurance-strength training groups. Participants trained for 60 min per day, three times per week for 12 weeks. The endurance exercises were performed at an intensity of 50–75% of the maximum heart rate, whereas the strength exercises were at 50–60% of the one-repetition maximum. Pre- and post-intervention BMD and BMC of the total body, lumbar spine, and femoral neck and physical capacity were measured. There were no differences among the densitometric parameters in the endurance group, but a significant increase in whole-body BMD in the endurance-strength group was found. Moreover, there was a significant difference between the groups in the changes in the lumbar spine BMC. Furthermore, both training programs significantly improved physical capacity with no differences between groups. Endurance training was more effective in maintaining BMC at the lumbar spine. However, both groups did not differ in effect on BMD. Further studies with a long-term follow-up should be considered to confirm these findings. The study was registered with the German Clinical Trials Register within the number DRKS00019832, and the date of registration was 26 February 2020 (retrospective registration).
Collapse
|
40
|
Qiu Y, Zhu G, Zeng C, Yuan S, Qian Y, Ye Z, Zhao S, Li R. Next‑generation sequencing of miRNAs and lncRNAs from rat femur and tibia under mechanical stress. Mol Med Rep 2021; 24:561. [PMID: 34109424 PMCID: PMC8201655 DOI: 10.3892/mmr.2021.12200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise intervention has become one of the most effective methods to prevent and treat osteoporosis, which is a common age‑related disease and seriously affects the health and quality of life of the elderly. However, the molecular mechanism remains to be elucidated. The present study demonstrated the exercise‑induced promotion of osteogenic differentiation and inhibition of adipogenic differentiation in femur and tibia by establishing an animal exercise model using a treadmill exercise system. MicroRNA (miRNA/miR) and long non‑coding (lnc)RNA sequencing analyses identified 16 upregulated and two downregulated miRNAs in the exercise group, as well as 44 upregulated lncRNAs and 39 downregulated lncRNAs in the exercise group. There was increased expression of miR‑9942 and miR‑7704 in both the femur and tibia and an upregulation of miR‑30d, miR‑5100 and miR‑1260 in the femur of animals from the exercise group. In addition, four of the five most downregulated lncRNAs, including lncRNA MSTRG.2625, lncRNA MSTRG.1557, lncRNA MSTRG.691 and lncRNA MSTRG.7497, were demonstrated to be suppressed in both the femur and tibia after treadmill exercise. The results of the present study provided a valuable resource for further exploring the molecular mechanisms underlying the regulation of osteoporosis by exercise.
Collapse
Affiliation(s)
- Yiyan Qiu
- Department of Spine Surgery, Section II, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510610, P.R. China
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, Guangdong 510280, P.R. China
| | - Guozheng Zhu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Canjun Zeng
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, Guangdong 510280, P.R. China
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510610, P.R. China
| | - Song Yuan
- Department of Orthopedics, Linzhi People's Hospital, Linzhi, Tibet 860000, P.R. China
| | - Yuepeng Qian
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, Guangdong 510280, P.R. China
- Department of Pediatric Orthopedics, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510610, P.R. China
| | - Zelin Ye
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shanwen Zhao
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, Guangdong 510280, P.R. China
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510610, P.R. China
| | - Runguang Li
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510610, P.R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, Guangdong 510280, P.R. China
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510610, P.R. China
- Department of Orthopedics, Linzhi People's Hospital, Linzhi, Tibet 860000, P.R. China
| |
Collapse
|
41
|
Chai Y, Pu X, Wu Y, Tian X, Li Q, Zeng F, Wang J, Gao J, Gong H, Chen Y. Inhibitory effect of Astragalus Membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway. Bioengineered 2021; 12:4464-4474. [PMID: 34304712 PMCID: PMC8806665 DOI: 10.1080/21655979.2021.1946633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spontaneous senile osteoporosis severely threatens the health of the senior population which has emerged as a severe issue for society. A SAMP6 mouse model was utilized to estimate the impact of intragastrically administered Astragalus Membranaceus (AR) on spontaneous senile osteoporosis. Bone mineral density (BMD) and bone microstructure were measured using Micro-CT; contents of calcium and phosphorus were determined with the colorimetric method; and gene and protein expressions of fibroblast growth factor 23 (FGF23), Klotho, Vitamin D receptor (VDR), CYP27B1 and CYP24A1 were detected using qPCR, Western blot and ELISA assays, respectively. The findings indicated that AR could improve the femoral BMD and bone microstructure, elevate the contents of calcium and phosphorus, and increase the expression of Klotho, VDR, and CYP27B1 whereas decreasing the expression of FGF23 and CYP24A1 in SAMP6 mice in a dose independent manner. The present study has demonstrated that AR can promote osteogenesis and alleviate osteoporosis. It is also expected to provide a new insight for the treatment of spontaneous senile osteoporosis and to serve as a research basis for AR application.
Collapse
Affiliation(s)
- Yihui Chai
- Resource Institute for Chinese Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang Pu
- College of Basic Medical, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongzhen Wu
- College of graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xingzhong Tian
- Department of Traditional Chinese Medicine, Zhangjiakou No.5 Hospital, Zhangjiakou, China
| | - Qian Li
- College of graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fanyong Zeng
- Department of Urology Surgery, Dejiang Nation Hospital of Traditional Chinese Medicine, Tongren, China
| | - Jing Wang
- College of graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Gao
- College of Basic Medical, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huaqian Gong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- College of Basic Medical, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
42
|
An Up-Date of the Muscle Strengthening Exercise Effectiveness in Postmenopausal Women with Osteoporosis: A Qualitative Systematic Review. J Clin Med 2021; 10:jcm10112229. [PMID: 34063906 PMCID: PMC8196674 DOI: 10.3390/jcm10112229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic disease that is characterized by decreased bone density and quality. Purpose: The purpose of this systematic review was to determine the effects of muscle strengthening exercise in postmenopausal women with OP. Methods: A literature search was conducted systematically in MEDLINE, CINAHL, EMBASE databases for human studies up to 31 March 2021. Two researchers screened the articles against predefined inclusion criteria; a third resolved discrepancies. Articles were included if they assessed the effects of muscle strengthening exercise in postmenopausal women with OP. The protocol for this systematic review was registered on PROSPERO (CRD42021207917) and a qualitative systematic review was carried out following the PRISMA statement. Methodological quality was evaluated through the scientific validity scales PEDro. Finally, RTCs and NRCTs risk of bias was assessed with the Cochrane risk of bias tool (Risk of Bias-ROB 2.0) and ROBINS-1, respectively. Results: A total of 16 studies (1028 subjects) that met the different eligibility criteria previously established were selected. There is evidence of good methodological quality and a low to moderate risk of bias that supports that muscle strengthening exercise alone or in combination with other therapeutic modalities improves BMD (9, n = 401) in proximal femur and lumbar vertebra body, muscle strength (10, n = 558), balance (4, n = 159), functionality (7, n = 617), and quality of life (5, n = 291). CONCLUSIONS Exercise programs focused on muscle strengthening have benefits for all variables studied in postmenopausal women with OP.
Collapse
|
43
|
Iolascon G, de Sire A, Curci C, Paoletta M, Liguori S, Calafiore D, Gimigliano F, Moretti A. Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur J Phys Rehabil Med 2021; 57:273-279. [PMID: 33650841 DOI: 10.23736/s1973-9087.21.06581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION People affected by osteoporosis and fragility fractures often report disability and poor health-related quality of life. Albeit rehabilitation has a crucial role in older people, post-menopausal women and other subjects with high risk of fragility fractures, the rehabilitation perspective has been poorly investigated in the available guidelines for osteoporosis. The aim of this systematic review was to systematically evaluate the quality of guidelines for osteoporosis from a rehabilitation perspective. EVIDENCE ACQUISITION On May 2020, we performed a systematic search on medical literature of all guidelines published in the last 10 years on PubMed, Pedro, and international guideline databases. The study selection was based on key terms "exercise," "physical activity" or "rehabilitation." All authors independently assessed the methodological quality through the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, consisting of six domains (scope, stakeholder involvement, rigor and development, clarity of presentation, applicability, editorial independence). EVIDENCE SYNTHESIS Out of 331 documents retrieved, a total of 34 guidelines were selected after the screening phases. Twenty (58.8%) high quality guidelines were reported. According to AGREE II instrument, a mean score of 78.1±21.8% was reported for "scope and purpose" domain; for stakeholder involvement, the mean score was 58.1±22.1%; the rigor of development was good (mean score of 61.3±27.3%); for clarity of presentation the mean score was 79.4±20.3%; the applicability was poor (mean score of 30.9±25.2%); for editorial independence the mean score was 75.1±24.6%. Rehabilitation recommendations for osteoporotic patients were reported in 21 (61.8%) of the selected guidelines. CONCLUSIONS This is the first systematic analysis evaluating quality of the guidelines for osteoporosis using AGREE II instrument. Starting from a state of the art of the currently available evidence, we could conclude that therapeutic exercise at moderate to high intensity is encouraged by several guidelines for the management of people with osteoporosis and fragility fractures. More than half of guidelines were of high-quality. However, most guidelines are lacking specific indications about exercise features. This study might support the implementation of a rehabilitation perspective in the guidelines for osteoporotic patients.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Grecia", Catanzaro, Italy -
| | - Claudio Curci
- Section of Neuromotor Rehabilitation, Department of Neuroscience, ASST Carlo Poma, Mantua, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Dario Calafiore
- Section of Neuromotor Rehabilitation, Department of Neuroscience, ASST Carlo Poma, Mantua, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
44
|
Coll PP, Phu S, Hajjar SH, Kirk B, Duque G, Taxel P. The prevention of osteoporosis and sarcopenia in older adults. J Am Geriatr Soc 2021; 69:1388-1398. [PMID: 33624287 DOI: 10.1111/jgs.17043] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Osteoporosis and sarcopenia are common in older adults. Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Bone fractures can result in changes in posture, pain, the need for surgical repair and functional impairment. Sarcopenia is the progressive and generalized loss of skeletal muscle mass, strength and/or physical performance. Older adults with sarcopenia experience increased risk of frailty, disability, hospitalizations, mortality, and a reduced quality of life. In this narrative review we provide guidance regarding the prevention of both osteoporosis and sarcopenia, including interventions that prevent both conditions from occurring, recommended screening and treatment to prevent progression.
Collapse
Affiliation(s)
- Patrick P Coll
- Department of Family Medicine, UConn Health, Farmington, Connecticut, USA.,Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Steven Phu
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia.,Falls, Balance, and Injury Research Centre, Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Samah H Hajjar
- Center on Aging, UConn Health, Farmington, Connecticut, USA.,Department of Medicine, Taibah University, Madina, Saudi Arabia
| | - Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Gustavo Duque
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Pam Taxel
- Department of Medicine, Division of Endocrinology & Metabolism, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
45
|
Tang L, An S, Zhang Z, Fan X, Guo J, Sun L, Ta D. MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats. Bone 2021; 143:115610. [PMID: 32829040 DOI: 10.1016/j.bone.2020.115610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture healing. However, the issue whether LIPUS is effective in preventing osteoporosis has not been clarified, and if so, what possible mechanisms might be responsible. Myostatin (MSTN) is a negative regulator of muscle growth, and its absence will trigger a positive response to bone. In this study, we examined the effects of LIPUS on bone micro-structure, mechanical properties and damage healing of hindlimb-suspended rats, and investigated whether the inhibition of MSTN plays a role in this process. The rats were randomly divided into four groups: Normal control group (NC), Hind limb suspension group (HLS), Hind limb suspension and 80 mW/cm2 LIPUS irradiation group (HLS+ 80 mW/cm2), Hind limb suspension and 30 mW/cm2 LIPUS irradiation group (HLS+ 30 mW/cm2). The HLS+ 80 mW/cm2 rats were treated with LIPUS (1 MHz, 80 mW/cm2) and the HLS+ 30 mW/cm2 rats were treated with LIPUS (1 MHz, 30 mW/cm2) on the femur for 20 min/day for 28 days. MC3T3-E1 cells were respectively cultured with the serum of wild type mouse and MSTN knockout mouse at 1% concentration for 7 days. After 28 days, LIPUS effectively prevented the destruction of bone microstructure and the decline of mechanical properties, and promoted bone defect healing in the tail-suspended rats. In addition, LIPUS effectively reduced the MSTN content in the quadriceps and serum of the tail-suspended rats, inhibited its receptor and downstream signaling molecules and activated the Wnt signaling pathway in femurs. Growth of MC-3T3-E1 cell cultured with the serum of MSTN knockout mice was superior to that with wild mice serum on day 7. These results indicate that MSTN is a key mediator in LIPUS preventing bone loss caused by hindlimb-suspension.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Shasha An
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhihao Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Human Phenome Institute, Fudan University, Shanghai 201203, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
46
|
Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study examined the effects of high-impact weight-bearing exercise on bone mineral density (BMD) and bone metabolic markers in middle-aged premenopausal women. Forty middle-aged premenopausal women were initially enrolled, but thirty-one participants (40.34 ± 3.69 years) completed in the study. The subjects were randomly divided into two groups including the high-impact weight-bearing exercise group (HWE, n = 14) and control group (CON, n = 17). The HWE group participated in the exercise for 50 min a day, three days per week for four months, while the CON group maintained their regular lifestyle. The HWE program included 10 different high-impact weight-bearing exercises such as jumping and running. BMD was measured using DXA (Hologic, QDR 4500W, Marlborough, MA, USA). The bone metabolic markers including serum 25-(OH) D, intact parathyroid hormone (PTH), osteoprotegerin (OPG), osteopontin (OPN), receptor activator of nuclear factor κB ligand (RANKL), osteocalcin (OC), C-terminal telopeptide of type 1 collagen (CTX), and calcium were analyzed. The results showed that the BMDs of femur, lumbar, and forearm did not significantly change during the intervention period in both the HWE and CON groups. A significant decrease in bone formation markers such as OC (F = 10.514, p = 0.003, ηp2 = 0.266) and an increase in bone resorption marker including CTX (F = 8.768, p = 0.006, ηp2 = 0.232) were found only in the CON group, while these values did not change in the HWE group. There was a significant increase in serum 25-(OH) D (F = 4.451, p = 0.044, ηp2 = 0.133) in the HWE group. Our findings suggest that four months of HWE is not sufficient to improve BMD and bone metabolic markers, but this impact exercise program may prevent the age-associated changes in bone turnover markers in middle-aged premenopausal women.
Collapse
|
47
|
Hettchen M, von Stengel S, Kohl M, Murphy MH, Shojaa M, Ghasemikaram M, Bragonzoni L, Benvenuti F, Ripamonti C, Benedetti MG, Julin M, Risto T, Kemmler W. Changes in Menopausal Risk Factors in Early Postmenopausal Osteopenic Women After 13 Months of High-Intensity Exercise: The Randomized Controlled ACTLIFE-RCT. Clin Interv Aging 2021; 16:83-96. [PMID: 33469276 PMCID: PMC7810823 DOI: 10.2147/cia.s283177] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
The menopausal transition is a critical period in women's lives. Exercise might be the most promising non-pharmaceutic intervention to address the large variety of risk factors related to the pronounced estradiol decline during peri- and early-postmenopause. The aim of this study was to determine the effect of an 18-month multipurpose exercise program on risk factors and symptoms related to the menopausal transition. Fifty-four women 1-5 years postmenopause with osteopenia or osteoporosis were randomly assigned 1) to a high impact weight-bearing/high-intensity/velocity resistance training group (EG: n=27) exercising three times a week or 2) to an attendance control group (CG: n=27) that performed low-intensity exercise once a week. Both groups were supplemented with cholecalciferol and calcium. The primary study endpoint was bone mineral density (BMD) at lumbar spine (LS) and total hip, secondary outcomes were lean body mass (LBM), total and abdominal body percentage, metabolic syndrome Z-Score (MetS-Z), menopausal symptoms and muscle strength and power. Due to COVID-19, the study was stopped after 13 months. We observed significant effects for BMD-LS (EG: 0.002±.018 versus CG: -.009±0.018 mg/cm2, p=0.027) but not for BMD total hip (EG: -0.01±.016 versus CG: -.009±0.020 mg/cm2, p=0.129). LBM improved significantly in the EG and decreased in the CG (0.39±1.08 vs -0.37±1.34 kg, p=0.026). Total and abdominal body fat improved significantly in the EG and was maintained in the CG (-1.44±1.49 vs -0.02±1.55 kg, p=0.002 and -1.50±2.33 vs 0.08±2.07 kg, p=0.011). Significant effects in favor of the EG were also determined for menopausal symptoms (p=0.029), hip/leg extension strength (p<0.001) and power (p<0.001). However, changes of the MetS-Z did not differ significantly (p=0.149) between EG and CG. In summary, with minor exceptions, we demonstrated the effectiveness of a multipurpose exercise protocol dedicated to early-postmenopausal women on various risk factors and complaints related to the menopausal transition.
Collapse
Affiliation(s)
- Michael Hettchen
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon von Stengel
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - Marie H Murphy
- Doctoral College, Ulster University, Newtownabbey, Antrim, Northern Ireland, UK
| | - Mahdieh Shojaa
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mansour Ghasemikaram
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Claudio Ripamonti
- Center for Osteoporosis and Bone Metabolic Disease, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS - Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Mikko Julin
- Laurea University of Applied Sciences, Espoo, Finland
| | - Tapani Risto
- Laurea University of Applied Sciences, Espoo, Finland
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
48
|
de Sousa Neto IV, Durigan JLQ, Carreiro de Farias Junior G, Bogni FH, Ruivo AL, de Araújo JO, Nonaka KO, Selistre-de-Araújo H, Marqueti RDC. Resistance Training Modulates the Matrix Metalloproteinase-2 Activity in Different Trabecular Bones in Aged Rats. Clin Interv Aging 2021; 16:71-81. [PMID: 33447020 PMCID: PMC7802792 DOI: 10.2147/cia.s276518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aging decreases osteogenic ability, inducing harmful effects on the bone extracellular matrix (ECM), while exercise training has been indicated as a tool to counteract bone disorders related to advancing age. The modulation of bone ECM is regulated by several types of matrix metalloproteinase (MMP); however, MMP-2 activity in different trabecular bones in response to resistance training (RT) has been neglected. Remodeling differs in different bones under the application of the same mechanical loading. Thus, we investigated the effects of 12 weeks of RT on MMP-2 activity in the lumbar vertebra (L6), tibia, and femur of young (3 months) and older rats (21 months). Methods Twenty Wistar rats were divided into four groups (five animals per group): young sedentary or trained and older sedentary or trained. The 12-week RT consisted of climbing a 1.1-m vertical ladder three times per week with progressive weights secured to the animals’ tails. The animals were killed 48 h after the end of the experimental period. The MMP-2 activity was assessed by the zymography method. Results The aging process induced lower MMP-2 activity in the lumbar vertebrae and tibia (p=0.01). RT upregulated pro, intermediate, and active MMP-2 activity in the tibia of young rats (p=0.001). RT also upregulated pro and active MMP-2 activity in the lumbar vertebrae and tibia with advancing age (p=0.01). There was no significant difference (p>0.05) between groups for MMP-2 of the femur, regardless of age and RT. Conclusion The aging process impairs MMP-2 activity, but RT is a potential therapeutic approach to minimize the deleterious effects of ECM degeneration in different aged bones. Distinct MMP-2 responses to exercise training may result in specific remodeling processes.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | | | - Fabio Henrique Bogni
- Department of Physiological Sciences, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Amanda Lima Ruivo
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Juliana Oliveira de Araújo
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Keico Okino Nonaka
- Department of Physiological Sciences, Universidade Federal de São Carlos, São Paulo, Brazil
| | | | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
49
|
Li Y, Yue J, Liu Y, Wu J, Guan M, Chen D, Pan H, Zhao X, Lu WW. Strontium regulates stem cell fate during osteogenic differentiation through asymmetric cell division. Acta Biomater 2021; 119:432-443. [PMID: 33148429 DOI: 10.1016/j.actbio.2020.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Strontium, a popular osteogenic component, has been incorporated into various types of orthopaedic biomaterials to enhance bone regeneration. Strontium performs dual effects in promoting bone formation and inhibiting bone resorption. Previous studies have focused on the effects of strontium ions (Sr2+) in regulating stem cell behavior to initiate regenerative capacity. However, its mechanisms for regulating the fate and homeostasis of stem cells have not been fully elucidated. In this study, the promotive effect of Sr2+ on the osteogenic differentiation of mesenchymal stem cells was confirmed both in vitro and in vivo. Interestingly, in response to Sr2+ treatment, stem cells performed asymmetric cell division to balance stemness maintenance and osteogenic differentiation. In initiating osteogenic differentiation, Sr2+ maintained more cells in the cell cycle by upregulating the population of S and G2/M phase cells, and this increase in the cell population contributed to enhanced osteogenic differentiation. The divided cells with different cell fates were observed, with one daughter cell maintained stemness, while the other committed to osteogenic lineage. Further investigation revealed that Sr2+ activated noncanonical Wnt signaling to regulate the expression and distribution of the Par complex, thus regulating cell division. As a result, the daughter cells committed to different cell fates due to the discriminately activation of osteogenic transcription factors caused by asymmetrically distributed Par3 and aPKC. The results of this study could facilitate the design of biomaterials for bone regeneration by providing a better understanding of cell fate determination regulated by strontium.
Collapse
|
50
|
Chen X, Yang K, Jin X, Meng Z, Liu B, Yu H, Lu P, Wang K, Fan Z, Tang Z, Zhang F, Liu C. Bone Autophagy: A Potential Way of Exercise-Mediated Meg3/P62/Runx2 Pathway to Regulate Bone Formation in T2DM Mice. Diabetes Metab Syndr Obes 2021; 14:2753-2764. [PMID: 34168475 PMCID: PMC8216663 DOI: 10.2147/dmso.s299744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meg3 has been shown to attenuate T2DM bone autophagy by activating p62 to inhibit bone formation. However, whether exercise can reverse this process to promote T2DM bone formation and its mechanism remains unknown. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with 8-week HIIT and downhill running exercise. Micro-CT was used to scan the bone microstructure. Bone morphology was observed by HE staining, and the osteoblast (OB) activity in bones was observed by AKP staining. Calcium ion and phosphorus concentration in serum was detected by ELISA; RT-PCR was used to detect the mRNA level, and Western blot was used to detect the protein level of related indexes in Meg3/p62/Runx2 pathway. RESULTS The inhibition of bone autophagy, in the bones of T2DM mice, resulted in the degradation of the bone tissue morphology and structure, with the increase of the expressions of Meg3, PI3K, Akt, mTOR, p62 and NF-κB. However, 8-week HIIT and downhill running could reverse this process, especially downhill running, manifested with the up-regulation of miR-16 mRNA level, along with Beclin-1, LC3 II and Runx2 mRNA and protein level. CONCLUSION T2DM leads to pathology in model mice. Eight-week HIIT and downhill running exercise can inhibit Meg3, activate autophagy of osteoblasts and promote bone formation in T2DM mice.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Correspondence: Xing Jin; Zhaoxiang Meng Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China Email
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Zhaoxiang Meng Email
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huilin Yu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kui Wang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhangling Fan
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Ziang Tang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Feng Zhang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|